

论大型煤制油项目排放的 CO2 对空分装置安全性影响分析

白亮亮

国家能源集团宁夏煤业煤制油分公司,宁夏 银川 750411

[摘要]空分装置的稳定运行直接关系到煤制油项目的生产效率、产品质量以及整个生产系统的安全性。煤制油项目排放的 CO_2 对空分装置安全性存在影响。文中分析了 CO_2 形成原理以及对空分装置的影响机制,并针对性提出了预防 CO_2 对空分装置安全性影响的应对措施,包括源头 CO_2 控制排放量,改进空分装置设计和操作控制流程,在空分装置中建立 CO_2 监测和预警系统,可以为降低 CO_2 对空分装置造成安全性影响提供一些参考。

[关键词]煤制油; CO₂; 空分装置

DOI: 10.33142/aem.v7i8.17745 中图分类号: TQ116. 文献标识码: A

Discussion on Analysis of the Impact of CO₂ Emissions from Large Coal to Oil Projects on the Safety of Air Separation Units

BAI Liangliang

Coal to Oil Branch of CHN Energy Ningxia Coal Industry Co., Ltd., Yinchuan, Ningxia, 750411, China

Abstract: The stable operation of air separation units is directly related to the production efficiency, product quality, and overall safety of coal to oil projects. The CO_2 emissions from coal to oil projects have an impact on the safety of air separation units. The article analyzes the principle of CO_2 formation and its impact mechanism on air separation units, and proposes targeted measures to prevent the safety impact of CO_2 on air separation units, including controlling the emission of CO_2 at the source, improving the design and operation control process of air separation units, establishing a CO_2 monitoring and early warning system in air separation units, which can provide some reference for reducing the safety impact of CO_2 on air separation units.

Keywords: coal to oil; CO₂; air separation units

引言

空分装置作为煤制油项目中的关键配套设备,其作用 至关重要。它通过对空气进行深度冷却、精馏等一系列工 艺过程,将空气中的氧气、氮气等成分分离出来,为煤制 油项目的气化、合成等环节提供高纯度的氧气和氮气。在 煤制油项目中,氧气用于煤炭的气化反应,以提供反应所 需的氧源,促进煤炭的转化;氮气则用于惰性保护、吹扫 等工艺操作,保障生产过程的安全稳定运行。

1 煤制油项目排放的 CO₂ 对空分装置的影响

1.1 煤制油项目中 CO₂的形成

原煤在气化作用下转变成粗煤气,粗煤气经过低温甲醇洗净化处理转变成 H₂气体和 CO 的混合物。气体混合物在适当的压力、温度和催化剂作用下,发生费托合成反应,生成轻质馏分油、重质馏分油、重质蜡、合成水以及CO₂等多种物质。这就是煤制油生产过程。煤制油生产过程中,煤炭的液化过程往往会释放数量较多的 CO₂;费托合成反应发生时,还会产生数量较多的 CO₂气体。

1.2 煤制油尾气脱碳的必要性

当环境中存在数量较多的 CO₂ 气体时,会对后续化学反应带来不利影响,影响煤制油的产油率,不利于煤制油工艺的应用和发展;还会对空分装置的安全性产生负面影响,导致空分装置故障甚至生产事故,影响人员和财产

安全。空分装置是负责向工业生产系统提供氧气、氮气、仪表气、工厂风的重要装置,其中分子筛纯化系统是脱除空气中水分子和 CO₂ 的子系统,其中的吸附剂在使用过程中受到过量吸附伤害,可能出现功能异常。首先表现就是,系统出口气中的 CO₂ 含量超标。其次,CO₂ 在通道中堆积堵塞影响整个装置的运行,或在通道内壁摩擦产生静电,给空分装置的安全运行带来潜在风险。2019 年河南省义马气化厂 C 套空分装置发生的爆炸事故,就与长期安全隐患的治理不当、事故预防不当有密切关系。所以,煤制油尾气脱碳十分有必要。

2 CO2对空分装置安全性的影响机制

2.1 CO2在空分装置中的物理行为

在空分装置的低温环境下,CO₂ 会发生相变。空分装置在运行过程中,空气被逐步冷却至极低温度。当温度降至 CO₂ 的凝固点(约为-78.5°C)以下时,CO₂ 会直接从气态转变为固态,形成干冰。这是因为在低温条件下,CO₂分子的热运动剧烈程度大幅降低,分子间的距离减小,相互作用力增强,从而使得 CO₂ 气体分子能够克服分子间的扩散趋势,聚集形成固态晶体结构。CO₂ 倾向于在温度较低的区域聚集,达到其凝固点,进而结晶析出并附着在表面。随着时间的推移,晶体附着量积累,会堵塞通道,影响设备的正常运行。部分 CO₂ 可能会重新气化,但仍

有一部分会溶解在液体中,随着液体的循环流动对空分装置的性能产生影响。

2.2 对关键组件的影响

2.2.1 换热器

当 CO₂结晶形成干冰颗粒附着在换热器的换热表面,并逐渐堆积并堵塞换热器的通道时,换热器内的空气流量自然减少,空气与冷流体之间的热交换效率降低。这使得空气无法被充分冷却到预期的温度,影响了后续的精馏等工艺过程。要想维持空气的冷却效果,保证空分装置的正常运行,就需要增加换热器的工作负荷。常见的措施包括:提高冷流体的流量、降低冷流体的温度或者增加换热器的换热面积等。然而,长期在高负荷、高能耗的状态下运行,换热器设备的磨损加速,使用寿命缩短,维护成本和维修频率随之上升。

2.2.2 精馏塔

CO₂的沸点较高,会更多地富集在精馏塔的液相中, 改变液相的组成和性质。这使得原本在正常情况下能够良 好进行的气液传质过程受到阻碍,气液平衡被打破。CO2 的存在导致塔板上的气液组成发生变化,温度分布也不再 均匀,自然会降低精馏塔的分离效率,严重影响精馏产品 的纯度。而且, CO₂在精馏塔内难以被完全分离, 会随着 产品气一起流出精馏塔,混入氧气和氮气产品中,进一步 增加产品中的杂质含量。对于对氧气、氮气、氩气等纯度 要求极高的工业应用,微量的 CO2 杂质也可能会对后续 工业产品的质量产生重大影响,降低产品的性能和可靠性。 而且, 当 CO。在精馏塔内大量积聚时,还可能引发更为 严重的故障,比如液泛。液泛是指在精馏塔中,由于气液 负荷过大或塔板效率过低等原因,导致液体在塔内无法正 常下流,反而被气体携带向上流动,使精馏塔内的气液分 布严重失衡,精馏过程无法正常进行的现象。一旦发生液 泛,精馏塔就必须要立即采取停车、调整负荷等措施进行 处理。停车不仅会导致生产中断,造成经济损失,还对精 馏塔设备本身造成损坏。

2.2.3 主冷凝蒸发器

主冷凝蒸发器是空分装置中实现气液热交换和氧氮分离的重要环节,可利用液氧蒸发吸收热量使气氮冷凝成液氮,从而实现氧氮的分离。CO2在液氧中的溶解度极低,会在主冷凝蒸发器中不断积累形成干冰颗粒。这些干冰颗粒与液氧混合在一起,形成了一种易燃易爆的混合物。干冰颗粒的存在增加了混合物的表面积,使得可燃物质与氧气的接触更加充分,一旦遇到能量源,如静电火花、摩擦火花等,就极易引发爆炸反应。CO2的存在还会影响液氧的物理性质,降低液氧的沸点。液氧的沸点是主冷凝蒸发器正常工作的重要参数之一,沸点的降低会改变主冷凝蒸发器内的温度和压力分布,使得设备的操作条件发生变化。当液氧沸点降低到一定程度时,可能会导致主冷凝蒸发器内的液氧蒸发速度过快,产生过高的压力,进一步增加了

设备发生泄漏甚至爆炸的风险。如果不能及时发现并处理 CO₂ 在主冷凝蒸发器中的积累问题,一旦发生爆炸事故, 不仅会导致工厂项目停产,还会造成人员伤亡和严重的环 境污染。

2.3 与其他杂质的协同作用

在空分装置中, CO_2 并非单独对装置各环节施加影响。它常常与其他有害杂质,如氧化亚氮 (N_2O) 等共同作用,加剧对装置安全性的影响。 N_2O 在空气中的含量虽然相对较低,物理性质与 CO_2 有相似之处,在空分装置的低温环境下, N_2O 也会发生相变,在一定条件下会凝结成固态。

 CO_2 与 N_2O 在空分装置中的协同作用主要体现在以下几个方面: ①二者的沸点和凝固点相近,在低温环境下会同时在设备的低温部位结晶析出,共同堵塞设备的通道和塔板; ②二者在换热器中同时积累时,会使换热表面的堵塞情况更加严重,进一步降低换热效率,增加设备的负荷和能耗; ③在精馏塔中,它们的共同积聚也会更加严重地破坏气液平衡,降低精馏效率,影响产品纯度; ④N2O在主冷凝蒸发器中同样会积累,与 CO_2 一起增加了主冷凝蒸发器内形成易燃易爆混合物的风险; ⑤ N_2O 本身具有一定的氧化性,在某些条件下,它可能会与其他可燃物质发生反应,进一步加剧爆炸的危险性; ⑥ N_2O 还会影响液氧的化学稳定性,与 CO_2 共同作用,改变液氧的物理和化学性质,使得主冷凝蒸发器的操作条件更加复杂和不稳定,增加了发生安全事故的可能性。

3 煤制油项目排放的 CO2 对空分装置安全性影响的预防与应对措施

3.1 源头控制:降低 CO₂排放

在煤制油项目中,采用清洁生产技术是从源头上减少 CO₂ 排放的关键手段。例如,先进的煤气化技术能够显著 提高煤炭的转化效率,从而降低 CO₂ 的产生量。多喷嘴 对置式水煤浆气化技术,通过优化气化炉的结构和操作参数,使煤炭在气化过程中反应更加充分。该技术的碳转化率相比同类技术提高 2~3 个百分点,意味着更多煤炭资源被有效转化应用,有效降低 CO₂ 排放量。

优化工艺过程也是降低 CO₂ 排放的重要途径。煤在400~500℃高温和 10~30MPa 高压下与催化剂反应直接液化,可转化成液态烃类燃料,并脱除硫、氮、氧等杂质原子(流程如下图 1 所示)。新型纳米催化剂的应用,可以有效提高反应活性和选择性,降低反应温度和压力,提高液体产品的转化率,提升油品质量。

在煤间接液化工艺中,煤气化生成合成气再进行净化、变换、脱碳、调整比例、费托合成转化反应的过程中,合理调整温度、压力和催化剂等反应条件,可以提高 CO 的转化率,减少因调整 H_2 与 CO 比例而产生的 CO_2 量。通过精确控制反应温度在 $270^{\circ}C\sim350^{\circ}C$,压力在 2.5MPa 左右,并采用新型的耐硫变换催化剂,可使 CO 的转化率提高,有效减少 CO_2 的生成。

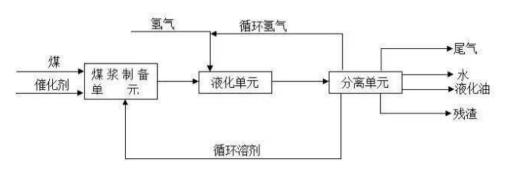


图 1 煤直接液化流程

提高能源效率是降低 CO_2 排放的核心策略之一。在煤制油项目中,安装高效的余热锅炉,将高温工艺气体的余热转化为蒸汽,用于驱动汽轮机发电或为其他装置提供热能,可使能源利用率提高 $15\%\sim20\%$,相应地减少 CO_2 排放。

碳捕集与封存(CCS)技术作为一种新兴的CO₂减排技术,在煤制油项目中具有广阔的应用前景。该技术通过物理、化学或生物方法将煤制油过程中产生的CO₂从排放源中分离出来,然后通过管道或其他运输方式将其输送到合适的地质储存地点,如深部咸水层、枯竭的油气田等,实现CO₂的长期封存,从而达到减少CO₂排放的目的。

3.2 过程控制: 改进空分装置设计与操作

3.2.1 优化进气预处理

加强对原料空气的预处理是提高 CO_2 脱除效率的关键环节。采用高效分子筛吸附剂是一种有效的技术手段。分子筛具有均匀的微孔结构和较大的比表面积,对 CO_2 具有高度的选择性吸附能力。MOR 分子筛,通过锌盐、铝酸钠、氢氧化钠等原料的水热晶化制备,具有高选择性吸附 CO_2 的能力,而对空气中的其他成分吸附较少。在空分装置的进气预处理系统中,装填 MOR 分子筛,可使空气中的 CO_2 含量从数百 ppm 降低至 1ppm 以下,满足空分装置对进气 CO_2 含量的严格要求。

为了进一步提高 CO_2 的脱除效率,还可以对分子筛吸附器的结构和操作条件进行优化。采用多层吸附床结构,在不同的吸附床层装填不同类型或不同性能的分子筛,使空气中的 CO_2 在经过多层吸附床时能够逐步被更有效地吸附脱除。合理调整吸附器的吸附时间、再生温度和再生时间等操作参数,也能够提高分子筛的吸附性能和使用寿命。通过优化操作参数,可使分子筛的吸附容量提高 $10\%\sim20\%$,从而增强对 CO_2 的脱除效果。

3.2.2 改进工艺流程

对空分装置工艺流程进行改进,增加除 CO_2 环节是降低 CO_2 在装置内积累风险的重要措施。在空气进入主换热器之前,增加一个专门的 CO_2 脱除塔,采用化学吸收法或物理吸附法对空气进行深度脱除 CO_2 处理。在化学吸收法中,可使用醇胺类溶液作为吸收剂,如甲基二乙

醇胺(MDEA)溶液。MDEA 溶液对 CO₂ 具有良好的吸收性能,CO₂ 与 MDEA 生成碳酸氢盐的反应(可逆)加速了吸收过程,能够将空气中的 CO₂ 含量降低至极低水平。

优化空分装置的操作参数也能够降低 CO₂ 在装置内的积累风险。合理调整精馏塔的回流比、塔板数和进料位置等参数,能够改善精馏塔内的气液传质效果,提高精馏效率,使 CO₂ 能够更有效地被分离出去,减少其在精馏塔内的积聚。适当提高精馏塔的操作压力,可使 CO₂ 在气相中的溶解度增加,从而减少其在液相中的含量,降低CO₂ 在精馏塔内形成干冰颗粒的可能性。通过优化操作参数,可使精馏塔内的 CO₂ 含量降低,提高空分装置的安全性和稳定性。

3.3 建立监测与预警系统

建立完善的 CO_2 监测与预警系统对于保障空分装置的安全运行至关重要。该系统能够实时监测装置内 CO_2 浓度,及时发现异常情况并采取相应措施,避免因 CO_2 浓度超标而引发安全事故。

在监测系统的构建方面,应采用先进的传感器技术,如红外吸收式 CO₂ 传感器、激光吸收式 CO₂ 传感器等。这些传感器具有响应速度快、测量精度高、稳定性好等优点,能够准确地测量装置内不同位置的 CO₂ 浓度。在空分装置的进气管道、分子筛吸附器出口、主换热器进出口、精馏塔各塔板等关键位置安装 CO₂ 传感器,实现对 CO₂ 浓度的多点实时监测。传感器采集到的数据通过工业以太网、现场总线等传输路径,实时传递到监控中心的控制系统中进行实时分析。一旦监测到 CO₂ 浓度超过安全阈值,立即触发预警机制,通知相关人员采取措施降低 CO₂ 浓度,确保空分装置的安全运行。

为了提高监测与预警系统的可靠性和准确性,还应定期对传感器进行校准和维护,确保其测量精度和性能稳定。建立历史数据存储和分析系统,对监测到的 CO₂ 浓度数据进行长期存储和分析,通过数据分析可以了解 CO₂ 浓度的变化趋势和规律,及时发现潜在的安全隐患,并为优化空分装置的运行和管理提供数据支持。

4 结语

综上,煤制油项目排出的 CO₂ 会对空分装置造成安

全性方面的负面影响,不利于项目稳定运行。文中分析了 CO₂ 形成原理以及对空分装置的影响机制,并针对性提出 了预防 CO₂ 对空分装置安全性影响的应对措施,包括源 头 CO₂ 控制排放量,改进空分装置设计和操作控制流程,在空分装置中建立 CO₂ 监测和预警系统,尽可能降低 CO₂ 对空分装置造成安全性影响。

[参考文献]

[1]焦松涛.空分装置安全风险管控与事故预防措施[J].中氮肥,2024(4):64-67.

[2]吴洲.煤制油尾气脱碳处理工艺的原理分析[J].山西化

 \perp ,2023,43(10):71-72.

[3]洪定波.空分装置分子筛出口二氧化碳含量测定偏高原因分析[J].大氮肥,2023,46(2):128-130.

[4]常亮,梁慧.低温甲醇洗净化装置尾气 CO2 排放流程优化改造[J].氮肥与合成气,2020,48(5):9-11.

[5]郭学旭.CO₂ 超标引起大型空分装置分子筛停车事故的分析及处理[J].化工管理,2018(7):107-109.

作者简介:白亮亮 (1993.9—),男,宁夏大学,化学工程与工艺,单位:国家能源集团宁夏煤业煤制油分公司职称:助理工程师。