工程建设

基于BWO-SVM的地下水水位预测

王颖慧 (河南省地质局地质灾害防治中心), 李佳丽 (安阳市建设工程质量安全和消防技术中心), 刘弋珲 (河南省地质局地质灾害防治中心)

摘要


地下水是全球水循环的重要组成部分,为掌握地下水水位动态变化,文章应用白鲸优化算法(Beluga Whale Optimization, BWO)对支持向量机(Support Vector Machines, SVM)进行参数优化,并利用支持向量机(SVM)的非线性拟合能力对未来5个月的地下水水位变化进行预测。以美国东北部某地下水水位观测井及其周边气象站数据为例,建立标准SVM模型以及BWO-SVM模型对地下水水位数据进行拟合并预测,对比验证了利用BWO-SVM模型方法对地下水水位动态变化进行预测的可行性。

关键词


地下水水位变化;预测;白鲸优化算法;支持向量机

全文:

PDF

参考


SHIKLOMANOV I A,RODDA J C.World Water Resources at the Beginning of the 21st Century[M].Cambrigde:Cambridge Univer‐sity Press,2003.

WADA Y,VANBEEK L,VIVIROLI D,et al.Global monthly water stress:2. Water demand and severity of water stress[J].Water Re‐sources Research,2011(47):68-69.

陈飞,徐翔宇,羊艳,等.中国地下水资源演变趋势及影响因素分析[J].水科学进展,2020,31(6):811-819.

王光生,杨建青,于钋,等.地下水动态预测的探讨[J].水文,2013,33(3):25-28.

JEONG J,PARK E,CHEN H,et al.Estimation of groundwater level based on the robust training of recurrent neural networks using corrupted data[J].Journal of Hydrology,2020(582):124512.

WU C,ZHANG X,WANG W,et al .Groundwater level modeling framework by combining the wavelet transform with a long short-term memory data-driven model[J].Science of the Total Environment,2021(783):146948.

张展羽,梁振华,冯宝平,等.基于主成分-时间序列模型的地下水位预测[J].水科学进展,2017,28(3):415-420.

YOON H,JUN S-C,HYUN Y,et al .A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer[J].Journal of Hydrology,2011(396):128-138.

陈海洋,滕彦国,王金生.基于GA参数优选的ε-SVR地下水位预测方法[J].水资源保护,2011,27(4):15-18.

刘娣,余钟波,吕海深,等.基于SVM-EnKF双向数据同化的地下水水位变化预测[J].水文,2023,43(6):58-65.

Changting Z,Gang L,Zeng M.Beluga whale optimization: A novel nature-inspired metaheuristic algorithm[J]. Knowledge-Based Systems,2022(251):55-56.

王亚辉,张虎晨,王学兵,等.基于混沌反向学习和水波算法改进的白鲸优化算法[J].计算机应用研究,2024,41(3):729-735.

陈心怡,张孟健,王德光.基于Fuch映射的改进白鲸优化算法及应用[J].计算机工程与科学,2024,46(8):1482-1492.




DOI: https://doi.org/10.33142/ec.v8i6.17239

Refbacks

  • 当前没有refback。


版权所有(c){$ COPYRIGHTYEAR} {$ copyrightHolder}

Creative Commons License
此作品已接受知识共享署名-非商业性使用 4.0国际许可协议的许可。