

水利水电工程施工中现代技术应用探讨

王永斌

定西市和源市政工程有限公司, 甘肃 定西 743000

[摘要]随着水利水电工程建设规模变得越来越大,其施工所处的环境以及自身结构的复杂程度也在一天天增加,在这样的情况下,现代技术在工程施工当中的运用就显得格外重要了。把现代技术引入到工程施工当中,一方面可以让施工的精度得到提升,施工的效率也能有所提高,另一方面在施工的安全管理、工程质量的控制以及工程的优化等方面也都发挥出了十分重要的作用。这篇文章着重围绕着水利水电工程的施工展开,全面且细致地探讨了多种多样的现代技术是如何应用的,经过对这些技术展开详尽的研究,希望能够给工程施工的管理者以及技术人员给予一定的参考价值,进而促使水利水电工程施工的现代化水平能够再上一个新的台阶。

[关键词]水利水电;工程施工;现代技术;技术应用

DOI: 10.33142/hst.v8i9.17683 中图分类号: TV5 文献标识码: A

Exploration on Modern Technology Application in Water Conservancy and Hydropower Engineering Construction

WANG Yongbin

Dingxi Heyuan Municipal Engineering Co., Ltd., Dingxi, Gansu, 743000, China

Abstract: With the increasing scale of water conservancy and hydropower engineering construction, the complexity of the construction environment and its own structure is also increasing day by day. In this situation, the application of modern technology in engineering construction becomes particularly important. Introducing modern technology into engineering construction can not only improve the accuracy and efficiency of construction, but also play a very important role in safety management, quality control, and optimization of the project. This article focuses on the construction of water conservancy and hydropower projects, comprehensively and meticulously exploring how various modern technologies are applied. Through detailed research on these technologies, it is hoped that it can provide some reference value for construction managers and technicians, and further promote the modernization level of water conservancy and hydropower project construction to a new level.

Keywords: water conservancy and hydropower; engineering construction; modern technology; technology application

引言

水利水电工程是国家基础设施建设里极为重要的一 部分,它跟防洪减灾、水资源调控以及能源供应有着紧密 关联,还对区域经济发展以及生态环境保护产生着直接影 响。随着工程规模变得越来越大、地形地质条件变得越来 越复杂以及施工任务变得越来越繁重,传统施工技术和管 理模式在精度方面、效率方面、安全方面以及信息化水平 方面慢慢凸显出局限性,已经很难满足现代水利水电工程 高质量建设的要求了。现代技术不断发展,这给水利水电 工程施工带来了新的机会,借助高精度测量技术、远程感 测以及无人机监测、智能化施工设备还有 BIM 信息化管 理手段等等,能够达成对施工全过程的精准把控、实时监 控以及科学管理,施工效率、施工质量以及安全水平都能 得到明显提升。与此这些技术的应用不但能助力施工方案 优化以及成本控制,而且还能为环境保护以及可持续发展 给予技术方面的有力支撑。所以,全面深入地去探讨现代 技术在水利水电工程施工中的运用情况,其意义不仅仅在 于实践层面,对于推动工程建设朝着数字化、智能化以及

高质量发展的方向迈进, 也有着十分深远的价值。

1 水利水电工程施工中现代技术应用的优势

在水利水电工程施工环节,现代技术的应用所呈现出 的优势, 重点在于提升工程精度、优化施工效率、降低安 全风险以及推动绿色施工等方面。当引入高精度测量技术 的时候,便能够达成对复杂地形、地质状况以及施工环境 展开精确勘测并且实施实时监控的目的,进而为设计以及 施工给予科学方面的依据,切实有效地防止因出现误差而 引发的质量方面的问题。凭借智能化施工设备以及信息化 管理平台,可以实现机械化、自动化以及数字化施工,大幅 度提升施工效率以及资源利用率,并且还能减少人工操作所 带来的不确定性以及安全隐患。远程感测、无人机监测以及 BIM 技术等的应用,使得施工全过程的可视化以及动态化 管理变成可能,这既提升了工程调度以及管理的科学性,也 为安全风险预警以及环境保护给予了强有力的支撑。现代技 术的引入对于节能减排是有帮助的,可推动水利水电工程朝 着绿色、可持续发展的方向迈进。所以说,现代技术不但是 解决传统施工当中瓶颈问题的有效手段,而且还为水利水电

工程高质量建设以及未来的发展赋予了强大的动力。

2 水利水电工程施工中存在的主要问题

2.1 自然环境和地质条件的挑战

在水利水电工程施工期间,自然环境以及地质条件往往会构成颇为棘手的挑战,其主要呈现于施工环境复杂且多变、地质状况存在很强的不确定性以及自然灾害风险偏高等诸多方面。水利水电工程大多处于山区、峡谷或者河流交汇之处,这些区域地形极为险峻,施工通道也较为狭窄,这无疑给施工机械以及材料运输带来了极大的阻碍^[1]。与此地质条件时常会出现断层、溶洞、软弱土层亦或是岩层结构分布不均等情况,如此一来便很容易致使在施工进程中出现塌方、滑坡或者渗漏等诸多问题,进而使得工程质量与安全风险有所增加。除此之外,自然环境当中气候条件所具有的不稳定性,像暴雨、洪水、冰冻以及高温等等,同样会对施工进度以及施工安全产生直接的影响。

2.2 施工安全和环境保护的难题

以我国云南省的溪洛渡水电站为例,该工程是世界上最大的拱坝之一,位于金沙江中游。在溪洛渡水电站的建设过程中,由于工程规模巨大,施工现场的安全管理极具挑战。此外,由于该工程位于地质复杂的山区,工程施工还面临着地质灾害的威胁,如山体滑坡和泥石流。另一个例子是三峡大坝工程。三峡大坝是世界上最大的水利水电工程之一,其施工过程中不仅面临着复杂的技术和管理挑战,还要应对严峻的环境保护问题。在大坝建设期间,大量的开挖和建设活动对周边生态环境造成了影响,包括水质变化、生态系统破坏等。

2.3 项目成本和工期控制的挑战

在水利水电工程施工期间,项目成本以及工期控制一直属于影响工程顺利开展的关键要素,此类工程往往投资规模颇为可观、施工周期相对较长,并且所涉及的环节众多,技术方面的要求也比较高,其中任何一个环节出现失误,都有可能致使成本超出预算以及工期出现延误情况。在施工进程当中,材料价格存在波动情况、设备使用与维护费用有所增加,还有劳动力成本不断上升等状况,这些都会直接促使整体投资额度升高;与此复杂的地质条件、难以预料的自然环境变化,再加上设计变更以及协调工作不够顺畅等情况,也极易引发工期出现拖延状况,进而使得间接费用以及管理成本增加。并且,水利水电工程一般与地方经济、社会发展有着极为紧密的关联,如果工期出现延误,那么不但会造成经济损失,而且还可能给社会以及环境方面带来诸多压力。

2.4 传统施工技术的局限性

在水利水电工程开展施工之际,传统施工技术所呈现出的局限性重点体现在多个方面,像施工效率不太高、精度有所欠缺、信息化水平处于偏低状态,还有对环境的适应性也比较差等。传统技术一般依靠人工经验,并且使用的机械化程度比较低的设备,这没办法满足当下大型且复杂的水利水电工程对于高效率、高精度以及高安全性方面

的要求。在进行测量、监测以及施工控制相关工作的时候,传统方法在数据采集以及处理方面的速度是比较缓慢的,很难实时地反映出施工现场实际的状况,进而对决策的科学性产生了影响。与此传统施工技术在信息化以及数字化手段的应用上存在不足之处,这就导致工程管理当中依旧存在着信息传递不顺畅、协同效率较低等问题^[2]。当面临复杂地质条件以及恶劣自然环境的情况时,传统施工技术的适应能力是有限的,通常很难确保施工的质量以及施工的进度能够得到保障。

3 现代技术在水利水电工程施工中的应用

3.1 高精度测量技术(如 GPS 和 GIS) 在水利水电工程中的应用

高精度测量技术在水利水电工程施工里有着极为关 键的作用,它既有着基础性作用,又是起到支撑作用的关 键所在。它的应用范围可不单单是传统的测量定位这么简 单,而是贯穿了整个施工过程,从工程规划开始,一直到 施工控制、质量监测, 乃至后期的运行维护, 都有它的身 影。借助高精度卫星定位技术,在那种地形复杂的环境当 中,能够实现厘米级甚至是毫米级的空间定位,给坝体轴 线怎么布设、溢洪道高程怎么控制、引水隧洞走向确定、 溢流坝段施工标高等这些关键环节都提供极为精确的数 据,尽可能地把因测量误差而产生的施工偏差以及工程风 险降到最低。在此情况之下, 地理信息系统能把测量成果 和地质条件、水文数据、施工进度还有环境监测信息整合 到一起,并且能进行动态更新,进而形成一个统一的空间 数据库, 达成施工过程的可视化、数字化以及智能化管理。 再加上无人机航测、三维激光扫描、水下测深以及地面激 光测量等先进技术,高精度测量能够迅速生成高分辨率的 数字地形模型、断面资料以及三维点云数据,这些数据能 用于土石方计算、边坡稳定性分析、坝体沉降以及结构变 形监测等方面,以此来提高工程质量控制以及安全管理的 水平。与此依靠连续时序测量所开展的动态监控,能够揭 示出结构位移、变形以及沉降的演变规律,给施工调整、 风险预警以及科学决策给予可靠的依据。

3.2 远程感测和无人机监测技术在水利水电工程中 的应用

远程感测以及无人机监测技术,在水利水电工程施工领域有着广泛的应用,并且具备十分重要的价值。其关键之处就在于达成施工区域高效的获取数据、动态的实施监控以及智能化的开展管理。远程感测技术借助卫星影像、多光谱还有高分辨率传感器,可针对工程区域的地形地貌、植被覆盖状况、水文变化情况以及地质灾害风险展开全面且连续的观测活动。所获取到的数据,一方面能够助力施工设计工作、规划选址事宜以及环境评价事项,另一方面还能给施工过程中土石方量的计算、边坡稳定性的分析、河道淤积的评估等方面给予科学方面的依据。而无人机监测技术,可以冲破传统人工勘测在复杂地形以及偏远区域

所存在的种种限制。通过搭载高清摄像头、激光雷达、红外热像仪以及多光谱传感器,对施工现场展开低空且高密度的数据采集操作,进而达成实时且精准的三维建模、断面分析以及动态监测目标^[3]。把高精度测量技术以及地理信息系统综合起来,无人机监测所获取的数据能够迅速生成数字地形模型以及施工进度可视化图表,如此一来便利于施工管理人员开展实时调度工作以及施工质量把控事宜。

3.3 智能化施工设备的应用在水利水电工程中的作用

智能化施工设备于水利水电工程施工环节当中起着 极为重要的作用,其最为关键之处就在于借助自动化、信 息化以及智能化的相关手段来促使施工效率得以提升,保 障施工精度,并且强化施工过程中的安全管理事宜。现代 的水利水电工程大多处于地形状况颇为复杂、施工环境极 其恶劣的区域范围之内,在这样的情况下,传统的机械设 备以及人工操作往往是很难去满足那种高精度、高效率以 及高安全性方面的施工要求的,然而智能化施工设备的应 用恰好就很好地解决了这一方面的瓶颈问题。像智能化挖 掘机、装载机、混凝土泵送设备以及坝体浇筑设备等,它 们凭借着自身所内置的传感器、定位系统以及自动控制系 统,就能够达成对施工动作进行精确控制以及实现自动化 操作的目的,如此一来便能够在很大程度上减少人工操作 所产生的误差,与此同时还能提高施工的速度以及机械的 利用率。在大型的土石方工程项目当中,智能化施工设备 要是配合上实时监测系统的话,那么就能够依据施工的具 体数据来自动地对作业参数做出相应的调整,进而实现针 对边坡开挖、运输以及堆放等方面的精细化管理,以此来 确保土方量以及结构尺寸能够符合精度方面的要求。智能 化设备还能够和施工信息管理平台、BIM 模型以及测量 监控系统相互联动起来,把施工的进度情况、设备的状态 状况、作业的数据信息以及环境方面的信息实时地上传至 相关平台,进而实现对整个施工流程的全流程数字化管理, 这无疑能够让工程管理人员更加便捷地开展科学调度以 及风险评估等相关工作[4]。除此之外,智能化施工设备在 安全管理这个方面同样有着十分突出的优势,通过其所配 备的传感器以及报警系统,是可以实时对设备的运行状态、 操作人员所在的位置以及危险区域等情况加以监测的,一 旦发现问题,便能够及时发出警示并且自动对操作做出相 应调整,如此便可降低施工事故的发生概率。与此智能设 备在节能减排、材料的精确控制以及施工质量的监控等方 面也都展现出了较为明显的优越性,进而为绿色施工以及 可持续发展提供了有力的技术支撑。

3.4 BIM 技术在水利水电工程施工中的应用

BIM 技术于水利水电工程施工当中的应用,已然成为推动工程朝着数字化、信息化以及智能化管理方向迈进的关键手段。它的核心价值就在于借助三维建模、数据集

成以及信息协同等方式,达成施工全过程的精细化管理目 标。凭借 BIM 技术,可以把设计、施工、监测以及运维 等诸多阶段的数据予以高度集成,进而形成能够可视化的 三维模型,以此直观地呈现出工程结构、施工流程、施工 节点以及材料布置等情况,给施工方案的优化、施工进度 的把控以及资源调度等方面都提供了科学且合理的依据。 在施工阶段, BIM 模型能够和高精度测量、无人机航测 以及智能化施工设备相互联动起来,实现像土石方计算、 坝体浇筑、隧洞开挖还有边坡支护等这些关键工序的虚拟 仿真以及动态管理。通过开展碰撞检测、施工模拟以及工 序优化等相关工作,能够在一定程度上减少施工过程中出 现的冲突以及设计变更情况,从而提升施工的精度与效率。 与此 BIM 技术还能够实时地对施工进度、质量监测以及 安全监控等方面的数据加以集成,为管理人员给予可视化 的决策方面的支持,能够及时察觉到潜在的风险以及施工 偏差, 进而实现对施工风险的预防性控制。在工程运维阶 段, BIM 模型甚至还能进一步延伸成为运维数据库,用 来记录设施的结构参数、维护记录以及监测数据等内容, 从而为后续的运行管理、检修计划以及安全评估等工作提 供完整的信息链条。

4 结语

现代技术于水利水电工程施工的应用已然成为提高工程质量、施工效率以及安全管理水准的关键途径。高精度测量技术、地理信息系统、远程感测与无人机监测、智能化施工设备以及 BIM 技术的引入,既突破了传统施工方法在精度、效率及信息化层面的限制,又达成了施工全程的数字化、可视化与智能化管理。这些技术的应用不但优化了施工方案、提升了工程管理水平,而且在保证施工安全、控制成本以及推动绿色施工等方面都起到了颇为重要的作用。未来,伴随技术的持续发展以及集成应用的不断深化,现代技术将在水利水电工程施工中发挥出更加关键的作用,为达成高质量且可持续的水利水电建设给予稳固的支撑。

[参考文献]

[1]邱海涛.水利水电工程施工中现代技术应用探讨[J].城市建设,2025(9):71-73.

[2]刘恩资.水利水电工程施工中现代技术应用分析[J].工程与建设,2024,38(1):148-174.

[3]梁荣,王华明,袁婷.混凝土施工技术在水利水电工程施工中的应用[J].工程建设与设计,2021(20):152-156.

[4]张旭,李晓波.水利水电工程施工中 BIM 技术的应用[J]. 居舍,2021(18):51-52.

作者简介: 王永斌 (1988.9—), 毕业院校: 大连理工大学, 所学专业: 水利水电工程, 当前就职单位: 定西市和源市政工程有限公司, 职称级别: 中级。