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ABSTRACT: The development of technology will eventually lead to industry transformation. By studying the relevant contents of the optimization

algorithm and its application cases, the present study aims to provide future architectural design practice methods and create more possibilities. This

paper sorts the optimization algorithms development and the historical evolution of its application in architectural design. Simultaneously, the algo-
rithm-based generative design platform and its corresponding plug-in have been generalized. Based on the analysis of two specific cases, this paper

proposes the concept and process of building designs driven by an optimization algorithm. Under the background of transforming architectural prac-
tice towards “digitalization”in the new century, the general process of building generative designs driven by the optimization algorithm is summa-
rized from different perspectives. These include the selection of design platform, determination of optimization goals for different design stages, and

iterative process of algorithm optimization. Then, the development prospects of the optimization algorithm and its potential impact on architects are

discussed.
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Introduction

At the beginning of 2020, the winning proposal for the

Shanghai Alibaba Group Headquarters, designed by Norman

Foster and his team (Foster+Partners)[1], garnered significant

attention from architects. This interest was not solely due to the

design itself, but also because the design concept prominently

featured the use of “Genetic Algorithms.”
“Genetic Algorithms”(GA) are well-known in aca-

demic circles, but in architectural practice—particularly

bid proposals, the project using it as a design philosophy

and finally winning the bid remains rare. The case under-

scores the growing impact of technological advancements

on architecture. Over the past half-century, architectural

design practices have undergone remarkable evolution and

transformation under computer aid: Transitioning from

hand-drawing with tools to 2D computer drafting in the

1980s, then to 3D modeling in the 1990s, and to Building

Information Modeling (BIM) technologies emerging in the

early 21st century. Recently, artificial intelligence and op-

timization algorithms have become prominent research

topics in the field of architecture (Figure 1) [2]. These
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five stages reflect the evolving focus and perspectives of

designers in different periods, and they are not independ-

ent or sequential; rather, they often overlap in practice.

Figure1 Thehistoryofcomputer-aidedarchitecturaldesign:Fiveeras

1 Optimizationalgorithmsandtheirdesignplatforms

An algorithm is a computational process used to

solve problems within a finite number of steps. It involves

methods such as deduction, induction, abstraction, general-
ization, and structured logic. An algorithm systematically

proposes logical principles and develops a solution that

can universally address problems. The strategy of an algo-
rithm lies in its ability to search for repetitive patterns, u-
niversal principles, interchangeable modules, and inductive

links, while its advantages include inferring new knowl-
edge and extending human cognitive limits [3]. For prop-
ositions with unknown, vague, or uncertain outcomes, al-
gorithms can be the optimal choice for seeking potential

solutions. Problems solvable by algorithms include P

problems (Polynomial Problems) and NP1) problems. NP

problems are characterized by uncertain computational

processes that cannot be strictly defined by mathematical

equations, resulting in a vast “solution space.”Most prob-
lems in architecture are NP problems [4], making optimi-
zation algorithms the best approach for addressing them.

In engineering practice, optimization algorithms typically

refer to “metaheuristic algorithms,”which are inspired by

random processes in nature, such as biological evolution,

swarm intelligence, and immune mechanisms. These algo-

rithms are designed to escape local optima and reliably

search the solution space[5].

1.1 Historyanddevelopmentofoptimizationalgorithms

Algorithms have historically accompanied the devel-
opment of disciplines such as mathematics and physics,

with their interaction with machines tracing back to the

establishment of computer science in the 1950s. With the

improvement of computational capabilities and growing

pursuit of enhanced performance in the field of engineer-
ing , various optimization algorithms have emerged, devel-
oped, and spread from computer laboratories to numerous

engineering practice fields.

Notable optimization algorithms in engineering in-
clude Genetic Algorithms (GA), Particle Swarm Optimiza-
tion ( PSO), Simulated Annealing ( SA), Immune Algo-
rithms ( IA), General Pattern Search ( GPS), Coordinate

Search, and Hooke-Jeeves (HJ) Algorithms. These algo-
rithms are used to optimize design parameters in engineer-
ing practice. When combined with certain physical simula-
tion processes, they create hybrid algorithms, which are

widely applied in the field of building energy [6,7]. Most

optimization algorithms derive from mathematical descrip-
tions of natural phenomena or physical processes, relying

on these descriptions to find optimal performance results
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within a vast “solution space.”Consequently, different op-
timization algorithms exhibit varying characteristics for

specific engineering problems, and no single optimization

algorithm performs optimally for all problems. Christoph

Waibel and colleagues have investigated optimization is-
sues related to building energy consumption by comparing va-
rious optimization algorithms in terms of search speed and ro-
bustness. Their findings reveal that the choice of hyperparame-
ters for different optimization algorithms significantly affects

the convergence speed of the optimization process. Without

considering prediction speed, Genetic Algorithms and Particle

Swarm Optimization consistently yield relatively optimal re-
sults across different problems [8].

The Genetic Algorithm (GA), previously mentioned,

was proposed by John Holland and his colleagues at the

University of Michigan in the 1960s[9]. Inspired by

Darwins theory of evolution, GA is an optimization meth-
od based on genetic principles and natural selection. Com-
pared to other optimization algorithms, GA offers a more

intuitive physical interpretation and has seen widespread

application in engineering due to the development of nu-
merous robust algorithmic tools. GA is suitable for nonlin-
ear, discontinuous problems and is characterized by fea-
tures such as the use of stochastic operators, handling of

large parameter spaces, open-source availability, simulta-
neous processing of discrete and continuous parameters,

and multi-objective optimization using Pareto fronts [10].

1.2 Optimizationalgorithmsandarchitecturaldesign

The relationship between computers and architectural

design dates back to the 1960s and 1970s,when Nicholas

Negroponte established computer models that transcended

clear-cut divisions in the design process and advocated for

a closer relationship between computers and designers

[11]. It is noteworthy that in the early stages of 2D CAD,

3D modeling, and even BIM, computers primarily assisted

with drafting and drawing, with limited involvement in

design optimization [12]. It was not until the advent of

Generative Components software in 2003 [13]and the

Grasshopper parametric software in 2007 that parametric

design and algorithmic design were truly accepted and

promoted, with the latter becoming a widely used tool for

architectural parametric design [14].

It is important to clarify that “parametric”and “algo-
rithmic”design are often conflated, with some perceiving

them as identical or overlapping concepts. However, “pa-
rameters,”“algorithms,” and “results” are all integral

components of architectural parametric models [15], with

“algorithms” specifically describing the computational

methods and generative logic from “parameters”to “re-
sults.”Additionally, the concept of “Generative Design”
complements these two design concepts by focusing on

process and outcomes, while parametric and algorithmic

design emphasize data and methods. The exploration of

generative design by Christiano Sodu has catalyzed a shift

in architectural design from a “result-oriented”approach

to a “process-oriented”one[16].
Entering the 21st century, architects face a doubling

of information quantity and increasing complexity. Opti-
mization algorithms such as GA can serve as both form-
generating tools and design optimization tools, offering ef-
fective means to address design issues related to form,

structure, performance, and facade. Recent applications of

optimization algorithms in architectural practice have con-
centrated on aspects such as energy consumption, structur-
al performance, and daylighting, with simulations and iter-
ations used to achieve optimal building performance. Re-
cent academic research focuses on optimization for struc-
tural performance [17-20], building energy consumption

and lifecycle costs [21-24], daylighting efficiency [25],
integrated energy and daylighting optimization [26, 27],
and multi-objective optimization incorporating energy,

daylighting, and structural costs[28]. A recent review

study by Berk Ekici et al. [29]provides a comprehensive

summary of the literature on two representative optimiza-
tion algorithms, genetic algorithms and particle swarm op-
timization, within the context of building performance op-
timization. It is noteworthy that this review also highlights

that various variants of PSO and GA are among the most

widely applied optimization algorithms in the field of

building performance optimization, but as noted by Thom-
as Wortmann, the extent of application of different optimi-
zation algorithms does not directly reflect the quality of

their performance. Instead, it is more influenced by

researcherspreferences and the constraints of design plat-
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forms regarding the ease or difficulty of integrating differ- ent algorithms [30].

Figure2 Multi-objectiveperformanceoptimizationalgorithmmodelforanofficebuildingdesign

Table1 Algorithm-baseddesignplatforms(grasshopper&dynamo)andtheircorrespondingplugins

Intervention methods Design platforms Plugins Algorithm descriptions

Built-in plugin approach

Grasshopper

Optimo

Octopus

SPEA2 and HypE algorithms are applicable to single-objective ormulti-objective op-
timization tasks within algorithm-based design platforms (such as Grasshopper and

Dynamo) and their corresponding plugin tasks.

Wallacei Utilizes the NSGA-II algorithm with enhanced custom visualization capabilities.

Optimus
Developed by TU Delft, this adaptive differential evolution algorithm features a set

of mutation strategies (jEDE).

Silvereye

Based on the Particle Swarm Optimization algorithm, it is suitable for single-objec-
tive optimization and can achieve superiorperformance results compared to genetic

algorithms in certain optimization problems.

Opossum

Based on surrogate model concepts, it addresses single-objective optimization prob-
lems with rapid early convergence, making it suitable for obtaininghigh-quality solu-
tions with small sample sizes.

Goat

Introduces gradient-based mathematical optimization algorithms, which provide more

stable optimal performance values compared to heuristic methods but are prone to

local optima and require integration with global optimization algorithms.

Nelder-Mead

Opt

Utilizes the Nelder-Mead algorithm (Simplex method), a classic non-heuristic mathe-
matical optimization technique that is susceptible to local optima.

Evo Performs single-objective optimization based on the classic GA algorithm.

Optimo
Enables both single-objective and multi-objective optimization based on the NSGA-
II algorithm.

External interface approach

Grasshopper

Python/C# API

Integration

FrOG

An open-source optimization framework based on C# ,with limited built-in algo-
rithms, requiring the development of optimization algorithms in C # to interface

with its visualization environment.

mode FRONTIER
A mature optimization software that includes a variety of built-insingle-objective and

multi-objective optimization algorithms.

MATLAB Implements optimization algorithms through MATLAB programming.

  Building performance does not exhibit a simple

trade-off relationship during the design process; optimi-
zing individual element does not necessarily lead to a

globally optimal solution. For example ( Figure 2), re-
searchers from the Technical University of Denmark ana-
lyzed the facade window design of an office building by

BIG Architects using the SPEA2 algorithm within GA.

They obtained optimal solutions and globally non-domina-
ted solutions for various building performance parameters,

such as energy consumption, daylighting coefficients, and

costs, associated with serrated windows under different

thermal property settings. These results are intended to as-
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sist designers in adjusting and optimizing window designs

[31]. This algorithmic model met local energy-saving de-
sign standards with high precision and rapid computation

speed, providing a convenient basis for timely decision-
making in the early stages of design.

1.3 Generativedesignplatformsbasedonoptimizational-

gorithms

  The application and proliferation of optimizational-
gorithms in architectural design have closely followed the

emergence of “parametric”design platforms within mod-
eling software. Notably, the Grasshopper platform, devel-
oped by Robert McNeel & Associates and based on Rhino

software, and the Dynamo platform, developed by Au-
todesk and based on Revit software, are among the most

prominent. Optimization algorithms within these design

platforms can be integrated into the architectural design

process via built-in plugins or external interfaces. Utilizing

various algorithmic tools allows for iterative computation

to achieve optimal solutions under single or multiple ob-
jectives, thereby providing technical support for architects
design thinking and creative processes and enabling the

exploration of greater possibilities.

Integration via Built-in Plugins: In Grasshopper, the

Octopus plugin, based on ETH Zurichs SPEA2 and HypE

algorithms, is suitable for single or multi-objective optimi-
zation tasks. Other notable plugins include Wallacei[32],
Optimus [33], Silvereye [34], Opossum [35], Goat [36],
and NELDER-MEAD OPTIMISATION[37]. In contrast,

the Dynamo platform features fewer optimization plugins,

such as Evo [38]and the Optimo [39]developed by the

Texas A&M University team. Dynamos optimization ca-
pabilities often require designers to link external optimiza-
tion programs using its built-in programming interfaces.

Integration via External Interfaces: Both Grasshopper

and Dynamo come with Python/C# programming inter-
faces. By using the MATLAB API, numerical parameters

from the design platforms can be imported in real-time in-
to MATLAB, where various optimization algorithms can

be introduced through programming languages. Addition-
ally, modeFRONTIER, a specialized performance optimi-
zation tool, uses its API for data conversion and serves as

a core process control, invoking various single and multi-

objective optimization algorithms for performance optimi-
zation and visualization. Thomas Wortmanns open-source

plugin, FrOG, can interface flexibly with custom optimiza-
tion algorithms, though this requires a proficient back-
ground in C# programming.

Table 1 lists the generative design platforms based on

these two integration methods, detailing the various opti-
mization algorithms and plugins used in architectural de-
sign.

2 Generativedesignpracticebasedonoptimizational-
gorithms

2.1 Foster+ PartnersandtheAlibabaHeadquarters

Foster+Partners is one of the most renowned archi-
tectural firms globally, established in 1967. Norman Foster,

a prominent figure of high-tech architecture, pioneered

“sustainable”design methods in the 1970s, focusing on

green and energy-efficient design as core elements of sus-
tainability. His approach involves considering environ-
mental friendliness and energy-saving technologies in ar-
chitectural solutions [40]. Additionally, the firm actively

organized research and development teams to integrate

comprehensive design processes through techniques such

as computer data analysis, thereby pushing technological

control in design to its limits.

2.1.1 The Specialist Modelling Group (SMG)

The Specialist Modelling Group (SMG) within Foster

+Partners was established by Hugh Whitehead in 1997,

focusing on finding more energy-efficient architectural

forms through computer-aided design [41]. The team

comprises architects skilled in digital technology and has

grown to include experts from fields such as mathematics,

industrial design, mechanical engineering, computational

physics, manufacturing, and acoustics. Over the next dec-
ade, SMGs development focused on two main areas: com-
putational geometry and construction-related issues, and

environmental analysis and simulation[42]. They have u-
tilized various algorithms for design optimization and gen-
erative design across hundreds of projects, with notable

examples including the London City Hall, Swiss Re Head-
quarters, and Beijing Capital International Airport Termi-
nal 3.
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2.1.2 The design of Alibaba Headquarters

The continuous development of specialized teams

like SMG, combined with over fifty years of practice and

technical accumulation, has enabled Foster+ Partners to

adeptly handle parameters, algorithms, and related design

methods. Therefore, in the Shanghai Alibaba Headquarters

design competition ( Figure 3), the proposal emphasized

the use of a unique architectural form guided by an inno-
vative design process, utilizing genetic algorithms to a-
chieve the optimal solution.

Figure3 RenderingsforthecompetitionofShanghaiAlibaba

Headquartersdesign

The application of algorithmic generative design in

this project focused primarily on the following four as-
pects[1, 43]:

(1) The modular unit assembly and construction ap-
proach is employed, utilizing “genetic algorithms”to opti-
mize the design of modules, resulting in a“pixelated”vol-
umetric arrangement. Subsequently, modules are mass-pro-
duced off-site to reduce waste and ensure construction

quality and efficiency.

(2) Algorithms are used to enhance the designs re-
sponsiveness to environmental conditions. For example,

the central open public space is designed to provide opti-
mal comfort throughout the year, shielding users from cold

winter winds and intense summer sunlight.

(3) Through calculations, the integration of indoor

and outdoor spaces and the maximization of external sce-
nic views are significantly enhanced. A key feature of this

design is the intention to increase the buildings transpar-
ency, allowing the public to gain insight into Alibabas

world while enabling employees to enjoy views of the sur-
rounding waterfront.

(4) The design is optimized according to the func-
tional requirements of different areas to achieve the most

suitable layout. For example, customized workspaces are

designed for various departments within Alibaba, integrat-

ingconsiderations such as furniture arrangement and natu-
ral light, thereby enhancing user work efficiency.

2.2 TheDesignofMaRSOffice

The MaRS Office project, a three-story building with

an approximate total area of 5600 m, was developed by

Autodesk in Toronto, Canada. The design vision was to

create a dynamic and highly functional innovative work-
space.

During the design of the three-story interior layout—
covering conference rooms, social spaces, special areas,

and equipment—the design team first gathered real de-
mands from over 250 employees, who are often over-
looked. The team then established six distinct objective

parameters for algorithmic generation and evaluation of

the office space [44], including:

Parameter 1: Space Preference—Distances from each

employee to their preferred interaction spaces and related

facilities.

Parameter 2: Work Style—Assessing whether the lighting

or visual elements of work areas match the preferences of users.

Parameter 3: Activity Level—Identifying potential high-
activity areas based on the geometric characteristics of the

room (Buzz[45]).
Parameter 4: Productivity—Controlling desk density

to minimize visual and noise distractions.

Parameter 5: Daylighting—Total number of natural

daylight hours throughout the year.

Parameter 6: External Views—Proportion of windows

offering unobstructed views from desks, corridors, and

other workspaces.

2.2.1 Model generation

Based on a homogeneous office space plan, the logic

for further design generation was defined. Initially, a

floorplan contour and standard column grid were estab-
lished from the design layout. Areas requiring optimiza-
tion were delineated, with axes, boundaries, and capture

points set for seven different work team zones. Changes in

capture points could automatically trigger boundary modifica-
tions. One edge of each zone was automatically designated for

meeting rooms, while other areas were arranged with employee

workstations. Various combinations of capture points and

boundaries generated a range of design options for selection by
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the designers, as illustrated in Figure 4.

Figure4 Planofthegeneratedmodelandschematicdiagramsofvariouselements

2.2.2 Parameter evaluation

After establishing the basic model generation system,

the design teamemployed a Multi-Objective Genetic Algo-
rithm (MOGA) to evaluate different design options. The e-

valuation results obtained from the calculation of input

values across different scenarios and the corresponding

variations in the six target parameters, providing real-time

feedback on design plans, as illustrated in Figure 5.

Figure5 Real-timesimulationanalysisdiagramscorrespondingtoevaluationparameters

Figure6 Real-timefeedbackdiagramsofdifferentiterationcountsduringschemeevolution

2.2.3 Solution evolution

For this project, the genetic algorithm was configured

with a crossover rate of 95% and a mutation rate of 0.2% .

The process involved 100 designs per generation, with a

total of 100 generations, resulting in 10000 generated de-
signs. Figure 6 depicts the evolution process, with each

point representing a design solution, each column indicating a

generation, and different colors denoting various parameter

characteristics. The x-axis shows the number of generations,

and the fine black lines connecting the points illustrate the di-
rect transfer of designs to the next generation.

2.2.4 Data analysis

Following the evolutionary process, the performance

of different design solutions was analyzed and filtered.

The MOGA approach yielded a Pareto-optimal set that

satisfied all performance criteria, narrowing down the de-

02



ZHUShuyan,MAChenlong,XIANGKe/JournalofSouthArchitecture3:(2024)14-25

http:∥www.viserdata.com/journal/jsa  

     

sign options. As shown in Figure 7, the design identified

as # 3251 was selected based on its superior performance

in a radar chart evaluating six parameters, with relatively

balanced scores across parameters. Figure 8 presents the

final plan corresponding to design # 3251, categorized into

four functional spaces: basic office (blue), team meetings

(green), equipment ( red), and support services (orange),

addressing usersprimary needs and preferences.

Figure7 Schemegroupingsandselectedoptimalsolutionsafterdataanalysis

2.2.5 Summary

The complete design process of this project highlights

several advantages of algorithm-driven generative design: first,

it truly realizes “human-computer collaboration” in design;

second, it evolves solutions by establishing goals, constraints,

and geometric systems rather than producing a final form di-

rectly; third, it explores thousands of options to find optimal

solutions for predefined parameters; fourth, it enables data ex-
change, creating possibilities for innovative designs; and fifth, it

allows for iterative reuse of algorithms and evolution processes,

offering valuable references for future project planning and de-
sign.

Figure8 Floorplanofthecorrespondinggeneratedschemeafteroptimizationcalculations

2.3 Otherrelevantprojects

In recent years,generative design practices driven by

optimization algorithms can be categorized into five main

types, distinguished by the specific optimization goals ad-

dressed for different architectural contexts, as summarized

in Table 2.
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Table2 Statisticaloverviewofalgorithm-drivengenerativedesignpracticesbasedondifferentoptimizationobjectives

Optimization

objectives
Application phase

Algorithm

type
Representative case studies Illustrations

Floor plan

layout

Planning and design: Volume de-
sign and interior detailing

Genetic algorithm
Las Vegas Convention Center [46]
(2017 Exhibition hall layout)

Structural form
Volume design during construction

phase

Particle swarm

algorithm

Japans “Meditation Forest”Cre-
matorium [47](Roof structure op-
timization)

Morphological

envelope

Performance in the latter construc-
tion phase of volume design

Unknown
Dubai Future Museum (Facade ma-
terial assembly)

Building

performance

Planning and design: Volume de-
sign during construction phase

Genetic algorithm

Nanhai Museum ( Hainan, China )

[48](Facade shading design and

optimization)

Other (e.g., 3D

printing, virtual

simulation)

Post-construction performance of

volume design
Unknown

Kazakhstan National Pantheon (3D

printing of model)

Figure9 Generalworkflowofoptimizationalgorithm-drivengenerativedesignpractice

3 Generalprocessofoptimizationalgorithm-driven
generativedesign

  The concept of “optimization algorithms”is closely

related to contemporary architectural practices and has

been increasingly applied and developed in the field.

Based on the analysis of related concepts and case studies,

a typical process for algorithm-driven generative design in

architecture includes several key stages: design, selection
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of computational platforms; determination of optimization

goals for different stages of architectural practice, and the

iterative process of algorithm optimization, leading to an

optimized solution, as shown in Figure 9.

The selection of design and computational platforms

is primarily based on commonly used platforms such as-
Revit and Rhino (refer to Section 1.3). Optimization goals

and stages of architectural practice can be referenced from

the cases in Table 2, where designers select goals based on

desired outcomes for the project. The iterative process of

algorithm optimization involves four main steps detailed

in the MaRS Office case (refer to Section 2.2). Through a

series of filtering, evolution, analysis, and evaluation

processes, a relatively optimal solution is achieved, repre-
senting the designers desired outcome.

Conclusionandoutlook

Technological advancements invariably drive indus-
try transformation, and emerging terminologies in archi-
tectural practice such as “digitalization,”“sustainability,”
“industrialization,”“information technology,”and “intel-
ligence”are closely linked to the evolution of computer

software. In the 21st century, architects are tasked not only

with addressing the form and spatial aspects of buildings

but also with focusing on their inherent performance and

external impacts. Optimization algorithms provide a valua-
ble pathway and method for architects to obtain a more

comprehensive understanding of buildings through rela-
tively scientific approaches.

Undoubtedly, the widespread application of optimiza-
tion algorithms across all steps of design practice presents

significant challenges. Nevertheless, these algorithms are

highly beneficial for specific aspects of current design

practices and for research into future comprehensive de-
sign methodologies. With changing lifestyles and increas-
ing attention to spatial quality, architectural design must

meet more complex functional demands and pursue inno-
vative forms, resulting in greater design complexity. Algo-
rithm-driven generative design allows architects to explore

a broader range of problem-solving possibilities through

computation. Moreover, algorithms, devoid of human intu-
ition or biases, help architects overcome subjective judg-
ments in traditional design processes, leading to novel and

high-performance design solutions. As David Benjamin,

the technical lead for the MaRS office project, states,“Ide-
ally, an algorithm-based automated process can make de-
sign decisions more inclusive. Computation assists design-
ers in making better trade-offs, not by removing subjective

judgment but by enabling them to avoid relying on vague

concepts to explain why one design is effective and anoth-
er is not”[49].

Algorithmic design does not imply that the role of ar-
chitects will be replaced. Architects must contextualize

and simplify relevant design issues, ensuring alignment

with their design concepts and visions. Thus, the transla-
tion between design solutions and algorithmic data, the in-
clusion and exclusion of effective evaluation or optimiza-
tion parameters, and the balancing of rational indicators

with humanistic factors are crucial. In the human-computer

interaction of architects and optimization algorithms,

architects decision-making remains pivotal, demanding

elevated comprehensive skills and presenting ongoing

challenges [50].

Figureandtablesources

Figure 1: Prepared by the author based on reference [2].
Figure 2: Prepared by the author based on reference [31].
Figure 3: Foster+Partners official website.

Figures 4-8: Redrawn by the author based on project video ma-
terials from ARCHITECT website.

Figure 9: Prepared by the author.

Tables 1 and 2: Prepared by the author, with images sourced

from the web and references [46-48].

Notes

1)NP: The term stands for Non-deterministic Polynomial,

which denotes problems that can be verified to a correct

solution within polynomial time. Problems classified as P

(polynomial) are those solvable by polynomial-time algo-
rithms; NP problems are those for which it is unknown if a

polynomial-time algorithm exists but can be verified to a

correct solution within polynomial time.
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