

餐饮业营业情况影响因素的计量经济学分析

郭益嘉 王惠滢 王佳慧 刘羿何 天津科技大学, 天津 300450

[摘要]本文搜集整理了我国 2021 年 31 个省份餐饮业的营业额及相关数据,结合文献研究和经济学相关理论,对餐饮业营业情况的影响因素进行研究,采用计量经济学的方法,建立多元线性回归模型,运用 Eviews 软件进行数据分析。选择各省的人均可支配收入、各省人均消费支出、餐饮业从业人数、餐饮业企业法人数量等作为解释变量,最后总结显著影响餐饮业营业额的因素,并提出相关建议,对促进餐饮业的发展具有重要意义。

[关键词] 计量经济学;餐饮业;多元线性回归;营业情况影响因素

DOI: 10.33142/mem.v4i3.10007 中图分类号: F719.3 文献标识码: A

Econometric Analysis of the Factors Influencing the Business Performance of the Catering Industry

GUO Yijia, WANG Huiying, WANG Jiahui, LIU Yihe Tianjin University of Science and Technology, Tianjin, 300450, China

Abstract: The article collected and organized the turnover and related data of the catering industry in 31 provinces of China in 2021. Combining literature research and economic theories, the influencing factors of the catering industry's business situation were studied. Econometric methods were used to establish a multiple linear regression model, and Eviews software was used for data analysis. Selecting per capita disposable income, per capita consumption expenditure, number of employees in the catering industry, and number of corporate entities in the catering industry as explanatory variables, and finally summarizing the factors that significantly affect the turnover of the catering industry, and proposing relevant suggestions, which is of great significance for promoting the development of the catering industry.

Keywords: econometrics; catering industry; multiple linear regression; factors affecting business performance

1 研究背景

餐饮业是我国第三产业的重要组成部分,对于活跃经济、繁荣市场具有重要作用。餐饮业的发展水平能够直接反映一个国家或地区的经济繁荣和市场活跃程度,并且是国民收入和人民生活水平提高,消费方式和消费结构发生深刻改变的重要体现。在国内大循环的背景下,餐饮业成为我国经济增长的坚实基础,将在双循环格局中发挥越来越重要的作用。因此,本文运用计量经济学模型研究 2021年我国餐饮业营业情况影响因素分析,能够有效的采取针对性措施推进餐饮业的高质量发展。

2 文献综述

由于餐饮业的营业额受多方面因素影响,在前人的相关研究中,从研究方法来看,大多采用多元线性回归模型,利用最小二乘法进行分析。从研究内容来看,相关学者将国内游客人数、人均消费支出及人均可支配收入作为因变量。也有文献认为人均消费支出、餐饮业从业人数、城镇居民数量具有显著影响。从研究时间来看,不同学者研究的时间或选取的样本不同,得出结论会有差异。在疫情期间,餐饮业营业额可能受各因素的影响程度均会减弱。有鉴于此,本文采取横截面类型数据,采用多元线性回归模型进行研究,将

影响因素分为6个角度,对其影响程度进行计量经济学分析。

3 计量经济学分析

3.1 模型的建立

结合 Eviews, 生成被解释变量 Y 与解释变量 X1, X2, X3, X4, X5 的相关散点图,初步设定多元线性回归模型: Y= β 0+ β 1X1+ β 2X2+ β 3X3+ β 4X4+ β 5X5+ μ 。其中 β 0是常数项,即无因素影响下的餐饮业的营业额,Y表示餐饮业营业额(亿元);X1表示居民人均可支配收入(元);X2表示餐饮业从业人数(人);X3表示餐饮业企业数量(个);X4表示城镇人口数(万人);X5表示人均消费支出(元); μ 表示随机干扰项。



图 1 解释变量与被解释变量的散点图

3.2 变量与数据说明

3.2.1 模型变量分析

被解释变量:选取 2021 年,中国 31 个省份餐饮业的营业额作为被解释变量。

解释变量:经济社会中,很多因素都会对餐饮业的营业情况产生影响,考虑到样本的可收集性和我国餐饮业的实际发展情况,选择以下几个因素作为主要介绍变量:(1)居民的可支配收入:经济高质量发展,人均可支配收入增加,居民会一定程度增加对餐饮的消费,与被解释变量呈正相关。(2)餐饮业从业人数:餐饮业的从业人数反映餐饮业的发展程度,将会影响消费者对餐饮消费的选择,与被解释变量呈正相关。(3)餐饮业企业数量:餐饮业企业注册数量反映消费者对餐饮业的需求程度和需求情况,与被解释变量呈正相关。(4)城镇人口数:城镇人口的可支配收入相对较高,相较于农村人口,其对餐饮业的需求对餐饮业的营业情况影响程度较大,与被解释变量呈正相关。(5)人均消费支出:居民消费支出情况反映居民的消费能力,与被解释变量呈正相关。

随机干扰项:餐饮业的营业额包括消费观念、政府政策、社会环境、宗教信仰、自然灾害等因素在内的众多因素的影响,属于不可观测的变量,将其纳入随机干扰项中。

3.2.2 数据来源

表 1 2021 年中国 31 个省份餐饮业营业额及相关因素统计表

		居民人均				人均消费
省份	业额(亿元)		业人数	业数量 (个)	口数(万	支出(元)
北京	888.7	入 (元) 75002	(人) 275946	2043	人) 1916	43640
天津	152.4	47449	62963	607	1165	33188
河北	66.7	29383	33837	600	4554	19954
山西	91.3	27426	52466	739	2207	17191
内蒙古	40.8	34108	21229	228	1637	22658
辽宁	108.1	35112	35757	336	3079	23831
吉林	27.2	27770	10243	193	1505	19605
黑龙江	13.2	27159	6670	121	2053	20636
上海	1131.2	78027	325218	2587	2223	48879
江苏	735.2	47498	271973	3300	6289	31451
浙江	547.4	57541	176975	2490	4752	36668
安徽	257.7	30904	95343	1449	3631	21911
福建	360.7	40659	100892	1599	2918	28440
江西	105.7	30610	42476	1093	2776	20290
山东	295.6	35705	127877	2072	6503	22821
河南	126.4	26811	56648	1333	5579	18391
湖北	323.6	30829	114941	1572	3736	23846
湖南	224.1	31993	78464	1634	3954	22798
广东	1230.1	44993	487919	5735	9466	31589
广西	94.4	26727	46079	745	2774	18088

省份	餐饮业营 业额(亿	居民人均 可支配收	餐饮业从 业人数	餐饮业企 业数量	城镇人 口数(万	人均消费
19 70	元)	入(元)	(人)	(个)	人)	支出(元)
海南	19.3	30457	8598	114	622	22242
重庆	190.9	33803	60738	1214	2259	24598
四川	460.3	29080	170621	2150	4841	21518
贵州	62.4	23996	24522	721	2093	17957
云南省	80.4	25666	33471	878	2394	18851
西藏	2. 5	24950	770	18	134	15343
陕西	245. 4	28568	80673	1526	2516	19347
甘肃	42.7	22066	24187	408	1328	17456
青海	5	25920	3183	53	362	19020
宁夏	5. 6	27905	3339	55	479	20024
新疆	37.4	26075	15854	257	1482	18961

注:数据来源于国家统计局

3.3 实证结果分析

利用 Eviews 软件对表 1 中的数据进行 OLS 回归估计 得到如下结果:

 $\hat{\mathbf{Y}}$ =-108. 1875+0. 003260X1+0. 002434X2+0. 024371X3 -0. 014630X4+0. 001708X5

(38. 86035) (. 002914) (. 000291) (. 029151) (. 007231) (. 005084)

R2=0. 990416 \overline{R}^2 =0. 988500 F=516. 7171

Dependent Variable: Y Method: Least Squares Date: 05/22/23 Time: 16:35 Sample: 131 Included observations: 31								
Variable	Coefficient	Std. Error	t-Statistic	Prob.				
С	-108,1875	38.86035	-2.784006	0.0101				
X1	0.003260	0.002914	1,118886	0.2738				
X2	0.002434	0.000291	8.353850	0.000				
X3	0.024371	0.029151	0.836033	0.411				
×4	-0.014630	0.007231	-2.023300	0.0539				
X5	0.001708	0.005084	0.335992	0.739				
R-squared	0.990416	Mean depend	ient var	257.174				
Adjusted R-squared	0.988500	S.D. depende	ent var	327.624				
S.E. of regression	35.13458	Akaike info cr	iterion	10.1282				
Sum squared resid	30860.97	Schwarz crite	rion	10.4057				
Log likelihood	-150.9876	Hannan-Quin		10.2187				
F-statistic	516.7171	Durbin-Watso	on stat	1.90496				
Prob(F-statistic)	0.000000							

图 2 最小二乘法回归结果

3.3.1 经济意义检验

根据回归结果可知,X4 前面的系数为负,与被解释变量呈负相关,不符合经济意义。X1、X2、X3、X5 前系数为正,且都介于0-1之间,符号、大小均与经济意义及相关理论相符,通过经济意义检验。

β1度量当居民人均可支配收入变动一个单位,餐饮 业营业额变动量的绝对值。

β2度量当餐饮业从业人数变动一个单位,餐饮业营业额变动量的绝对值。

β3度量当餐饮业注册企业数量变动一个单位,餐饮业营业额变动量的绝对值。

β4度量城镇人口数量变动一个单位,餐饮业营业额 变动量的绝对值。

β5度量人均消费支出变动一个单位,餐饮业营业额 变动量的绝对值。

3.3.2 统计检验

- (1) 拟合优度检验。由回归结果可知,可决系数 R2=0.990416,调整的可决系数为 0.988500,非常接近于 1,可见回归方程对样本观测值的拟合程度非常好。
- (2) F 检验。原假设 H0: β 1= β 2= β 3= β 4= β 5=0, 在给定显著性水平 α =5%, 在 F 分布表中查询临界值 F0. 05 (5, 25) =2. 60, 由图 2 可知 F=516. 7171> F0. 05 (5, 25) =2. 60, 说明小概率事件发生,原假设不成立,拒绝原假设,可知方程总体线性关系显著。即所选取的 6 个因变量均对餐饮业的营业额具有显著影响。
- (3) t 检验。给定显著性水平 α =5%,分别对于 β j=0(j=1,2,3,4,5) 查询 t 分布表中,自由度为 n-k-1=25 的 t 分布的临界值。通过比较各参数的 t 统计量的值与 t 临界值的大小关系,可得 β 2 的 t 统计量的绝对值大于 t0.025(25)=2.06,小概率事件发生,拒绝原假设。在 5%的显著性水平下,餐饮业从业人数对餐饮业营业额具有显著影响。而 β 1、 β 3、 β 4、 β 5 对应的 t 值均小于 t 的临界值,不能拒绝原假设,不能通过显著性检验。

3.4 模型的完善

3.4.1 多重共线性检验

(1) 判定相关系数检验法

`-/	(1)) Delity (Maximum)						
View Proc Object Print Name Freeze Sample Sheet Stats Spec							
Correlation							
	X1	X2	X3	X4	X5		
X1	1.000000	0.723214	0.539838	0.192996	0.985402		
X2	0.723214	1.000000	0.944543	0.676507	0.743071		
Х3	0.539838	0.944543	1.000000	0.831986	0.571710		
X4	0.192996	0.676507	0.831986	1.000000	0.218903		
X5	0.985402	0.743071	0.571710	0.218903	1.000000		

图 3 相关系数矩阵

根据检验结果分析可知,各解释变量之间的相关系数 线性关系大多数在 0.5 以上,且基本接近于 1,表明各解 释变量之间存在较强的多重共线性。

(2) 逐步回归法

为克服变量间的多重共线性,利用 Eviews 进行逐步回归,以 Y 为被解释变量,逐个引入解释变量,进行模型估计,根据拟合优度 R2 决定是否引入新变量,并检验变量是否能通过 t 检验,再根据模型情况具体分析解决。

由初始模型的 t 检验可知, X2 对被解释变量的影响最为显著, 因此将 Y 对于 X2 与其他解释变量进行逐步回归。

Dependent Variable: Y Method: Least Squares Date: 05/24/23 Time: 21:32 Sample: 1 31 Included observations: 31

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-139.0600	20.78468	-6.690506	0.0000
X1	0.004906	0.000705	6.954722	0.0000
X2	0.002444	8.59E-05	28.44990	0.0000
R-squared	0.988460	Mean dependent var		257.1742
Adjusted R-squared	0.987636	S.D. dependent var		327.6247
S.E. of regression	36.42953	Akaike info cr	iterion	10.12040
Sum squared resid	37159.11	Schwarz crite	rion	10.25918
Log likelihood	-153.8662	Hannan-Quin	in criter.	10.16564
F-statistic	1199.214	Durbin-Watso	on stat	1.518017
Prob(F-statistic)	0.000000			

图 4 X1、X2 回归结果

拟合优度 R2=0.988460,拟合程度较高,接近于1, 且变量均能通过显著性检验,对被解释变量具有显著影响。

Dependent Variable: Y Method: Least Squares Date: 05/24/23 Time: 21:48 Sample: 1 31 Included observations: 31

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	16.57059	13.34875	1.241358	0.2248
X2	0.003717	0.000246	15.08766	0.0000
хз	-0.082756	0.022895	-3.614533	0.0012
R-squared	0.978540	Mean dependent var		257.1742
Adjusted R-squared	0.977007	S.D. dependent var		327.6247
S.E. of regression	49.67921	Akaike info cr	iterion	10.74082
Sum squared resid	69104.67	Schwarz crite	rion	10.87959
Log likelihood	-163.4826	Hannan-Quin	in criter.	10.78605
F-statistic	638.3719	Durbin-Watso	on stat	2.067536
Prob(F-statistic)	0.000000			

图 5 X2、X3 回归结果

拟合优度 R2=0.978540,拟合程度较高,但解释变量 X3 不符合经济意义。

Dependent Variable: Y Method: Least Squares Date: 05/24/23 Time: 21:54 Sample: 1.31 Included observations: 31

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-119.4265	35.47439	-3.366555	0.0023
X2	0.002654	0.000137	19.32289	0.0000
X4	-0.011016	0.005127	-2.148503	0.0408
X5	0.006901	0.001483	4.653512	0.0001
R-squared	0.989827	Mean dependent var		257.1742
Adjusted R-squared	0.988696	S.D. depende	ent var	327.6247
S.E. of regression	34.83271	Akaike info criterion		10.05890
Sum squared resid	32759.57	Schwarz crite	rion	10.24394
Log likelihood	-151.9130	Hannan-Quin	in criter.	10.11922
F-statistic	875.6652	Durbin-Watso	on stat	1.996904
Prob(F-statistic)	0.000000			

图 6 X2、X4、X5 回归结果

拟合优度 R2=0.981870, 拟合程度较高, 但解释变量 X4 不符合经济意义, 且未能通过显著性检验。

通过以上逐步回归,得出结论,以 X1、X2 为解释变量的模型拟合优度最高,且能够通过显著性检验,符合经济意义,即居民人均可支配收入、餐饮业从业人数对餐饮业营业额有显著影响。得到如下模型:

 $\hat{Y}=-139.0600+0.004906X1+0.002444X2$

(20.78468) (.000705) (8.59E-05)

R2=0. 988460 \overline{R}^2 =0. 987636 F=1199. 214

3.4.2 异方差性检验

(1) 图示检验法

用图示法检验异方差性,即检验随机误差项的方差与解释变量观测值之间的相关性,因此观察随机干扰项的方差与 X1、X2 的散点图判断是否存在同方差。

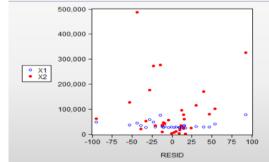


图 7 图示法检验异方差

由上图可知,随机干扰项的方差与解释变量 X1、X2 存在一定程度上的相关性,因此存在同方差,违背了基本 假设。

(2) 布罗施-帕甘 (B-P) 检验

布罗施-帕甘检验是一种较现代的最为常用的异方差 检验方法,具备将所有检验都放在同一框架中的好处,可 检验残差平方和与解释变量是否具有相关性。检验通过受 约束的 F 检验或拉格朗日乘数 LM 进行。

其中:

$$F = \frac{R^2/K}{(1-R^2)/(n-k-1)}, \quad LM = n \cdot R2$$

Heteroskedasticity rest.	Breusch-Fag	ari-Godiney	
F-statistic	6.222018	Prob. F(2,28)	0.005
Obs*R-squared	9.538245	Prob. Chi-Square(2)	0.008
Scaled explained SS	12.67105	Prob. Chi-Square(2)	0.0018

est Equation: Dependent Variable: RESID^2 lethod: Least Squares Date: 05/24/23 Time: 22:43 sample: 1 31 included observations: 31

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	-2107.210	1080.532	-1.950160	0.0612
X1	0.099070	0.036671	2.701593	0.0116
X2	-0.001729	0.004466	-0.387251	0.7015
R-squared	0.307685	Mean dependent var		1198,681
Adjusted R-squared	0.258234	S.D. dependent var		2198.946
S.E. of regression	1893.860	Akaike info cr	iterion	18.02239
Sum squared resid	1.00E+08	Schwarz crite	rion	18.16116
Log likelihood	-276.3470	Hannan-Quinn criter.		18.06762
F-statistic	6.222018	Durbin-Watson stat		2.525308
Prob(F-statistic)	0.005811			

图 8 BP 检验

根据回归结果可知, F=6.2220, LM=9.5382, 在显著 性水平 α =5%的情况下, F(2,28) =3.34, $x_2(2)$ =5.99, F(2,28)统计量和 LM 的值均大于临界值, 小概率事件发生, 原假 设不成立,存在异方差。

(3) 怀特 (White) 检验

怀特检验是对 BP 检验的一种拓展,对包含解释变量的 平方项以及不同解释变量间的交叉项进行辅助回归。类似于 BP 检验, 怀特检验同样可以借助 F 统计量和 LM 进行检验。

Heteroskedasticity Test: White							
F-statistic	2.723039	Prob. F(5,25)	and the same of th	0.0426			
Obs*R-squared	10.93018	Prob. Chi-Squ	uare(5)	0.0528			
Scaled explained SS	14.52016	Prob. Chi-Squ	0.0126				
Test Equation:							
Dependent Variable: RI	ESID^2						
Method: Least Squares							
Date: 05/24/23 Time: 2	22:47						
Sample: 131							
Included observations:	31						
Variable	Coefficient	Std. Error	t-Statistic	Prob.			
C	-17.21711	5373.082	-0.003204	0.9975			
X1	-0.120492	0.345741	-0.348505	0.7304			
X1^2	5.04E-06	5.66E-06	0.890449	0.3817			
X1*X2	-1.25E-06	1.10E-06	-1.141359	0.2645			
X2	0.031699	0.034448	0.920217	0.3663			
X2^2	3.98E-08	3.89E-08	1.025187	0.3151			
R-squared	0.352586	Mean depend		1198.68			
Adjusted R-squared	0.223104	S.D. depende		2198.946			
S.E. of regression	1938.189	Akaike info cr		18.14888			
Sum squared resid	93914391	Schwarz crite		18.42643			
Log likelihood	-275.3077	Hannan-Quin	in criter.	18.23935			
F-statistic	2.723039	Durbin-Watso	on stat	2.328890			
Prob(F-statistic)	0.042593						

图 9 怀特检验

由以上回归结果可知, F=2.723039, LM=10.930166, 在显著性水平 α =5%的情况下, F(2,28) =3.34, x 2(2)=5.99, F 统计量和 LM 的值均大于临界值, 小概率事 件发生,原假设不成立,存在异方差。

(4) 异方差的修正(WLS)

模型经检验证明存在异方差,利用加权最小二乘法进 行修正,对原模型进行加权,使之变为一个新的不存在异 方差的模型, 然后采用最小二乘法估计其参数。

通过对模型加权 W=1/resid²,得到如下图修正结果。 $\hat{\mathbf{Y}} = -119.8342 + 0.004197 \times 1 + 0.002492 \times 2$

(7.658401) (.000279) (4.36E-05)

R2=0, 988007 \overline{R}^2 =0. 988453 F=9680. 156

Dependent Variable: Y
Method: Least Squares
Date: 05/26/23 Time: 18:17
Sample: 1 31
Included observations: 31
Weighting series W
Weighting beries with the series of the s

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	-119.8342	7.658401	-15.64742	0.0000
X1	0.004197	0.000279	15.04631	0.0000
X2	0.002492	4.36E-05	57.12618	0.0000
	Weighted	Statistics		
R-squared	0.998556	Mean dependent var		5.886439
Adjusted R-squared	0.998453	S.D. dependent var		31.04084
S.E. of regression	0.027931	Akaike info criterion		-4.226373
Sum squared resid	0.021844	Schwarz criterion		-4.087600
Log likelihood	68.50877	Hannan-Quinn criter.		-4.181136
F-statistic	9680.156	Durbin-Watson stat		1.469770
Prob(F-statistic)	0.000000	Weighted me	an dep.	5.600042
	Unweighte	d Statistics		
R-squared	0.988007	Mean depend	fent var	257,1742
Adjusted R-squared	0.987150	S.D. depende	ent var	327.6247
S.E. of regression	37.13891	Sum squared	resid	38620.37
Durbin-Watson stat	1.726033			

图 10 异方差的修正 (WLS)

3.4.3 模型设定偏误检验

(1) 残差图示法。对所设定的模型进行最小二乘法 回归,得到残差与某解释变量的散点图,从图形考察估计 的残差序列是否有规律的变动,判断模型是否遗漏重要解 释变量或设定函数形式有偏误。由于 X1 对被解释变量的 影响程度较大,所以观察残差序列与 X1 的散点图。

由下图可知, 残差与解释变量 X1 存在一定程度的相 关性,表明模型可能存在遗漏重要解释变量或模型设定偏 误问题。

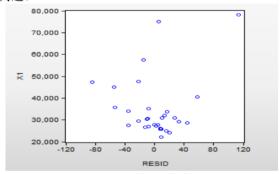


图 11 残差与 X1 散点图

(2) RESET 检验。检验模型的函数形式是否设定正确 的检验上,使用拉姆齐提出的 RESET 检验,通过 F 检验或 t 检验判断是否将Ŷ的若干次幂引入模型中,以此检验模型的 函数形式是否将非线性的形式设定为错误的线性形式。

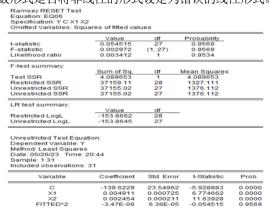


图 12 RESET 检验

由以上回归结果可知,在 5%的显著性水平下 F 检验或 t 检验均能通过,即接受原假设,无需引入 $\hat{\mathbf{Y}}$ 的若干次幂,不存在模型设定偏误。

4 结论与建议

4.1 结论分析

在经过经济意义检验、统计检验、计量经济学检验后,消除了多重共线性和异方差,得到最优的多元线性回归模型:

 $\hat{\mathbf{Y}}$ =-119. 8342+0. 004197X1+0. 002492X2

(7.658401) (.000279) (4.36E-05)

R2=0. 988007 \overline{R}^2 =0. 988453 F=9680. 156

最终的模型符合经济意义,且能够通过显著性检验, 拟合优度较高,表明居民可支配收入和餐饮业从业人数对 餐饮业的营业额具有显著影响。

4.2 对策建议

从回归模型中我们可以看出,餐饮业营业额由多个解释变量共同作用,其结果受多个因素影响。本文只选取了五个比较具有代表性的影响因素,在实际问题中,需结合经济变动情况和突发事件等其他因素进行实际分析。

在不考虑模型设定和影响因素选取的条件下,通过 计量分析模型可知,居民人均可支配收入和餐饮业从业 人数对餐饮业营业额的影响最显著,且这两个因素都对 餐饮业发展有促进作用。为进一步提高餐饮业营业额, 促进国内餐饮业的持续化、健康化发展,现提出以下几 点建议:

(1) 居民可支配收入和消费支出

人均可支配收入和人均消费支出对餐饮业的发展具有正影响作用。人均消费支出的增加展现了农村人群生活水平的提高,同时也带来了餐饮业发展的新机遇。未来应推进经济高质量发展,使发展成果共享,增加居民收入,提高社会的福利水平。

(2) 餐饮业发展情况

餐饮业在发展过程中要有共同体意识以及连锁店的 建立,整合运作形成规模优势,增强企业竞争力。重视员 工的数量和服务质量,以顾客需求为中心,树立良好的服 务意识。做好产品的研发和生产销售,抓住市场机遇,激 发餐饮业发展活力。

(3) 餐饮业未来展望

规范餐饮业市场秩序,制定科学的行业标准,营造良好的餐饮业营商环境,推进我国餐饮业规范化、标准化发展。在线上点餐迅速发展的今天,餐饮业应同时兼顾外卖,扩大餐饮业的消费,借助互联网的优势,加强餐饮业的宣推广力度,提高知名度。

最后,本文得出的模型将进一步体现消费对于后疫情时代餐饮业发展的重要作用,餐饮业产业的发展应该结合大时代发展格局,进行消费者偏好的精准定位,餐饮业发展的同时能够拉动我国经济的进步。同时可利用该模型可以进行经济预测,对未来经济规划的制定具有一定的参考价值。

[参考文献]

[1] 相思豆. 北京市国内旅游收入影响因素分析[J]. 环渤海经济瞭望, 2022, (5): 12-13.

[2]徐文雯. 建筑行业从业人员工资影响因素探讨——基于计量经济学研究[J]. 投资与创业, 2021, (22):13-14.

[3]王美霞,卢垚宇. 我国对外贸易影响因素的计量经济学分析[J]. 榆林学院学报,2023,(22):33-34.

[4] 展睿. 基于计量经济学的线上消费影响因素探讨[J]. 黑龙江科学, 2023, (11): 22-23.

[5]何闯. 我国餐饮业营业额的计量经济学分析[J]. 产业创新研究,2022, (5): 44-45.

作者简介:郭益嘉(2003.8—),毕业院校:天津科技大学,专业:国际经济与贸易专业。