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Abstract 

In order to improve the accuracy of wind turbine fault diagnosis, a wind turbine fault diagnosis method based on 

Subtraction-Average-Based Optimizer (SABO) optimized Variational Mode Decomposition (VMD) and Kernel Extreme Learning 

Machine (KELM) is proposed. Firstly, the SABO algorithm was used to optimize the VMD parameters and decompose the original 

signal to obtain the best modal components, and then the nine features were calculated to obtain the feature vectors. Secondly, the 

SABO algorithm was used to optimize the KELM parameters, and the training set and the test set were divided according to different 

proportions. The results were compared with the optimized model without SABO algorithm. The experimental results show that the 

fault diagnosis method of wind turbine based on SABO-VMD-KELM model can achieve fault diagnosis quickly and effectively, and 

has higher accuracy. 
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1 Introduction 

Wind energy has the characteristics of clean, 

environmental protection, large reserves and wide 

distribution
 [1]

. It has become one of the indispensable 

energy sources in today's world, and wind turbines are 

also all over the world. Due to its poor working 

conditions and complex load conditions, in order to 

ensure the normal operation of the wind turbine and 

reduce the cost of operation and maintenance, it is 

necessary to overhaul the wind turbine regularly. Wind 

turbine fault types can be divided into electrical faults and 

mechanical faults, and air gap eccentricity 
[2]

 and 

inter-turn short circuit faults 
[3]

 are the fault types with 

high frequency in mechanical and electrical faults, 

respectively. Wind turbine fault will have a significant 

impact on safe and efficient production, so the research 

on fault diagnosis method of wind turbine is of great 

significance to ensure the steady operation of wind 

turbine and equipment maintenance.  

The generator fault signal is often accompanied by 

periodic impact, showing nonlinear and non-stationary 

characteristics. A large number of scholars have studied 

its fault diagnosis method 
[4-7]

. In literature 
[8]

, the deep 

convolutional network is used to extract the vibration 

signal features of wind turbine, and then the fault 

classification is completed through the fully connected 

neural network. The results show that the fault diagnosis 

rate of this method is higher than that of other comparison 

methods. Jing Huang and Ruping Lin 
[9]

 et al. used whale 

optimization algorithm to optimize variational mode 

decomposition (VMD) with sample entropy as their 

fitness function, and then extracted the optimal intrinsic 

mode functions (IMFs) energy entropy to realize the 

generator inter-turn short circuit fault diagnosis, which 

improved the accuracy of fault diagnosis. Kernel Extreme 

Learning machine (KELM) is an extension of extreme 

learning machine, which can deal with nonlinear 

problems efficiently. Iiterature 
[10]

 use the particle swarm 

optimization kernel extreme learning machine to diagnose 

the fault of rotating machinery, and a modified 

hierarchical multi-scale dispersion entropy calculation 

method is proposed. The results show that this methods 

can well complete the fault diagnosis of rotating 

machinery. The above scholars have proved the 

effectiveness of VMD and KELM in generator signal 

processing, but the selection of VMD and KELM parameters 

has a great impact on their result 
[11]

. Yong Lv 
[12]

 proposed a 

VMD optimization algorithm based on variable 

bandwidth control parameter strategy and center 

frequency adaptive convergence strategy. The actual case 

verifies that the optimized VMD can obtain more accurate 

and efficient results. 
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Pavel Trojovsky and Mohammad Dehghani proposed 

the Subtraction-Average-Based Optimizer (SABO) 
[13]

 

algorithm which is a mathematical metaheuristic algorithm 

based on mathematical concepts, foundations and 

operations in 2023. This method has fast convergence 

speed and good optimization results. This can prevent the 

dependence of the algorithm on specific middle group 

members, and through the optimization of this algorithm, it 

can avoid falling into local optimal solutions. 

This paper proposes a wind turbine fault diagnosis 

method based on SABO-VMD-KELM model.Firstly, the 

SABO algorithm was used to optimize the VMD 

parameters to obtain the best modal components, and the 

features of the modal components were calculated to form 

a feature vector, and the training set and the test set were 

divided according to different proportions. Secondly, the 

SABO algorithm was used to optimize the KELM 

parameters by using the error rate of the training set and 

the test set as the fitness function, and the SABO-KELM 

model was established. Finally, the test set data is input 

for fault diagnosis and classification. 

2 Fault Diagnosis Methods  

2.1 Basic Principle of SABO 

Unlike group-based metaheuristic algorithms 

inspired by various natural collective phenomena, the 

SABO  algorithm is a mathematical metaheuristic 

algorithm based on mathematical concepts, foundations, 

and operations. This method features fast convergence 

and effective optimization results. The specific principles 

of the SABO algorithm are as follows: 

(1) The search agent positions are randomly 

initialized in the search space. 

 (1) 

xi,d is its dth dimension in the search space (decision 

variable), M is the number of search agents, n is the 

number of decision variables, ri,d is a random number 

between 0 and 1, and lbd and ubd  are the lower and 

upper bounds of the dth decision variable. 

(2) The iterative process of SABO. 

The SABO algorithm is based on a newly proposed 

operation “  v”,which is defined by the −subtraction of 

the search agents Q from the search agent P,which is 

shown as follows: 

    (2) 

where  v is a vector of the dimension n, in which 

components are random numbers that are generated 

between 0 and 1, the operation “∗” represents the 

Hadamard product of the two vectors, F(P) and F(Q) are 

the values of the objective function of the search agents P 

and Q. 

In the SABO method we've proposed, the movement 

of a given search agent Xi within the exploration space is 

determined by averaging the differences between every 

other search agent Xj (where j equals 1, 2, ..., M) and the 

search agent Xi. Therefore, each search agent's updated 

location is computed using equation (3). 

  (3) 

where  is the new proposed position for the ith 

search agent Xi , M is the total number of the search 

agents, and  is a vector of the dimension n, in which 

components have a normal distribution with the values 

from the interval [0, 1]. 

Then, if this proposed new position leads to an 

improvement in the value of the objective function, it is 

acceptable as the new position of the corresponding agent, 

according to (4). 

             (4) 

where  and  are the objective function values of 

the search agents  and , respectively. 

2.2 VMD basic principles and optimization methods 

Variational Mode Decomposition is an adaptive 

signal processing algorithm for handling non-stationary 

and nonlinear signals. It can determine the central 

frequency and bandwidth of each intrinsic mode function 

component (IMFs) of the signal under a variational 

constraint framework, with the total bandwidth being 

minimal. The number of components is determined by the 

predefined number of decomposition levels K, then 

transforming the decomposition process of the original 

signal into the solving process of a variational problem. 

The specific steps are as follows: 

(1) obtain the unilateral spectrum of IMFs. 

            (5) 

Where ,  is the impulse function, and 

 is the k-th IMF obtained from decomposition. 

(2) Adjust the IMF spectrum to its fundamental band. 

Introducing the exponential operator  to adjust the 

spectra of each modal component to their fundamental 

frequency band B. 

       (6) 

Where ωk is the center frequency of the kth IMF. 

(3) Demodulate each IMF, estimate the bandwidth of 

each modal component, and construct a constrained 

variational model. 

   (7) 

Where δ(t) is the Dirac distribution function and ‖ ‖2 

is the 2-norm. 

To solve the above constraint model, the quadratic 
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penalty factor and Lagrange multiplier are introduced, so 

that the constraint problem can be transformed into an 

unconstrained problem. 

 

  (8) 

Where α is the quadratic penalty factor, and 〈  〉 

represents the inner product between vectors. 

The central frequency method 
[14]

 is usually used to 

determine the number of modal components in VMD. In 

this paper, the SABO algorithm is used to optimize the 

VMD's secondary penalty factor and the number of 

modal components K. The paper selects the minimum 

envelope entropy as the fitness function for VMD. 

Envelope entropy represents the sparsity characteristic 

of the original signal; when an IMF contains more noise 

and less characteristic information, the envelope entropy 

is higher, and vice versa. The fitness function serves as a 

criterion in the SABO-optimized VMD algorithm for 

evaluating the quality of search agent positions and is 

also an important factor influencing the quality of VMD 

results. The other parts of this paper are arranged as 

follows. Section II introduces the principle of fault 

diagnosis method, Section III summarizes the method 

process, and finally, the conclusion of this paper is 

obtained in the Section IV. 

2.3 SABO-KELM 

Kernel Extreme Learning Machine (KELM) is an 

improved algorithm based on Extreme Learning 

Machine (ELM) and optimized through a kernel 

function. KELM is capable of enhancing the predictive 

performance of the model while retaining the advantages 

of ELM. ELM is a single hidden layer feedforward 

neural network, whose objective function represented in 

matrix form is as follows. 

              (9) 

Where x is the input vector,h(x) and H are the hidden 

layer node outputs, β is the output weight; L is the desired 

output. 

Transform the network training into a problem of 

solving a linear system. It is determined according to the 

formula, where is the generalized inverse matrix of H. 

Introduce the regularization coefficient C and the unit 

matrix I to enhance the stability of the neural network. 

The least squares solution of β is shown in the 

formula(10-12). 

                (10) 

             (11) 

          (12) 

In this paper, Radial-Basis-Kernel function is 

introduced into ELM, and the kernel matrix is shown in 

formula(13-15), where is the formula of 

Radial-Basis-Kernel function. 

        (13) 

    (14) 

The objective function can be expressed as: 

      (15) 

Where  is the given training sample, N is the 

number of samples. 

This paper optimizes the regularization coefficient C 

and kernel coefficient of KELM using the SABO 

algorithm. The paper selects the error rate of the training 

and test sets as the fitness function for SABO-KELM. 

3 Fault Diagnosis Process 

Since the selection of parameters for VMD and 

KELM can impact their results, this paper uses the SABO 

algorithm to optimize the VMD secondary penalty factor、

the number of modal components and the KELM kernel 

coefficient、 regularization coefficient.  

The main method process of this paper is shown in 

the figure, and the specific steps are as follows: 

(1) Decompose the original signal using VMD; 

(2) Set the number of iterations, optimization 

dimensions, and optimization bounds for the SABO 

algorithm, using the minimum envelope entropy as the 

fitness function, and apply the SABO algorithm to 

optimize the number of VMD modal components and the 

secondary penalty factor; 

(3) Obtain the optimal IMF and calculate its mean, 

variance, kurtosis, effective value, peak factor, impulse 

factor, dispersion entropy, permutation entropy, and 

sample entropy to construct a feature vector;  

(4) Set parameters for the SABO algorithm, and use 

the error rate of the training and test sets to optimize the 

regularization coefficient C and kernel coefficient of the 

KELM model; 

(5) Select the Radial-Basis-Kernel function as the 

kernel function for KELM, input the training set feature 

matrix to train the KELM model; 

(6) Input the test set data into the SABO-KELM 

model to obtain prediction results. 
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Figure 1  Flowchart of fault diagnosis 

4 Experimental Analysis 

4.1 Experimental signal acquisition 

To verify the effectiveness of the proposed 

SABO-VMD-KELM model in this paper, experimental 

data from a LR-5 permanent magnet generator at North 

China Electric Power University is used. The test unit is 

an inner rotor permanent magnet wind power generator 

with a rated power of 5KW and a sampling frequency of 

5000Hz. Simulations were carried out for four different 

states of the generator under full load operation: normal 

operation, 10% radial static eccentricity fault of the air 

gap (RSAGE), 10% short-circuit fault in stator windings 

between phases A1-A4 (SISC), and two combined faults 

(RSAGE & RISC). Vibration signals from the stator were 

collected using a vibration acceleration sensor. The table 

below shows some of the collected data. 

 

Figure 2  Wind turbine experimental setup 

4.2 Analysis of VMD results 

Using SABO to optimize the VMD decomposition 

of stator vibration signals, obtaining the optimal IMF 

based on the minimum envelope entropy as the fitness 

function. Calculate its mean, variance, kurtosis, effective 

value, peak factor, impulse factor, dispersion entropy, 

permutation entropy, and sample entropy to construct a 

feature vector. Choose 100 signal groups under each of 

the four conditions – normal, RSAGE, SISC, 

RSAGE&RISC (labeled as 1, 2, 3, 4, respectively) – 

totaling 400 signal groups as input and label them as 

shown in the table below. Due to space limitations, the 

table only lists the effective value from the feature vector. 

Figure 3 shows the distribution of the effective values of 

the best IMF components in each group, which can only 

roughly distinguish the four operating states of the 

generator, but cannot achieve accurate diagnosis, so it 

needs to be further imported into KELM for analysis. 

Table 1  Grouping eature vectors 

Serial Number Valid value Lable 

1 2.5439 1 

… … … 

100 3.5242 1 

101 4.5712 2 

… … … 

200 4.5803 2 

201 3.2327 3 

… … … 

300 2.7084 3 

301 2.6484 4 

… … … 

400 2.0802 4 

 

Figure 3  Effective value distribution of the best IMF 

components for each group 

4.3 Analysis of KELM results 

To validate the effectiveness of the 

SABO-VMD-KELM model in fault identification and the 

impact of the training set proportion on the results, training 

and test sets with different data partition ratios were 

randomly extracted. The test set was then input into the 

model for classification, and the results are presented in the 

table. The results demonstrate that as the proportion of the 

training set gradually increases, the accuracy of the model's 

recognition also improves. This proves the good stability of 

the SABO-VMD-KELM model, which does not suffer 

from overfitting or underfitting, though the model training 

time also increases. The figure below shows the confusion 

matrix when the training set accounts for 60%. 
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Table 2  Results for different test set proportions 

Percentage of training set 30% 40% 50% 60% 

Accuracy/% 93.2 95.6 96.8 98.1 

Testing time/s 3.2 3.8 4.5 5.1 

  
(a)                         (b) 

Figure 4  Fault diagnosis results 

4.4 Comparison of methods 

To further illustrate the effectiveness of the method 

in this paper, The SABO-KELM model is compared with 

the particle swarm optimization (PSO) KELM model, 

SABO-optimized VMD feature vectors were imported 

into SABO-KELM and PSO-KELM models, and the fault 

accuracy rates were calculated as shown in the figure. The 

table shows that SABO-VMD-KELM outperforms 

PSO-KELM in terms of accuracy for normal, RSAGE, 

SISC, and RSAGE&RISC conditions, and also has a 

shorter training time, demonstrating the effectiveness and 

speed of the method presented in this paper. 

 
(a)SABO-KELM 

 

(b)PSO-KELM 

Figure 5  Comparison of method results 

Both models were subjected to ten repeated 

experiments, and the results showed that the correct 

diagnosis rate of SABO-VMD-KELM was consistently 

higher than that of PSO-KELM in all ten experiments. 

 

Figure 6  The results of ten times 

Table 3  Accuracy comparison 

Method Average accuracy/% 

SABO -KELM 98.75 

PSO-KELM 91.88 

5 Case Study of External Rotor Permanent 
Magnet Generator 

5.1 Experimental signal acquisition 

In order to further verify the effectiveness of the 

proposed method, the author uses the data of the outer 

rotor permanent magnet power generation motor model 

test unit for analysis. The following figure shows the 

experimental unit diagram of the outer rotor permanent 

magnet power motor model. 

 

Figure 6  Outer rotor permanent magnet generator set 

The moving-mode unit can simulate the external 

rotor permanent magnet generator RAGE, SISC, 

RSAGE&SISC, simulate the operation of external rotor 

permanent magnet generator by driving motor, and collect 

the vibration data of generator stator with sampling 

frequency of 5000Hz. The author recorded four kinds of 

generator fault data: normal, RSAGE, RISC, and 

RSAGE&SISC. The vibration data of each state was 

divided into 100 groups of signal sequences with length of 

2048, a total of 400 groups of samples, and the proportion 

of training set and test set was 60%. The specific data 

information description is shown in the table: 
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Table 4  Data information description 

Type of fault Number of training set groups Lable 

NORMAL 40 1 

RSAGE 40 2 

SISC 40 3 

RSAGE&SISC 40 4 

5.2 Analysis of results 

The author used SABO algorithm to optimize VMD 

parameters to extract the best IMF effective values for 

each group, and the results are shown in Figure 8. 

 

Figure 8  Effective value distribution of the best IMF 

components for each group 

The characteristics of different faults in Figure 3 are 

slightly different and have a certain degree of 

identification, but precise fault diagnosis and 

classification cannot be achieved. Therefore, the extracted 

feature vectors are input into the SABO-KELM model for 

training and testing to obtain the fault diagnosis rate, and 

the results are shown in Figure 9. 

 
(a) 

 
(b) 

Figure 9  Fault diagnosis results 

Only 2 of 160 groups of data were diagnosed 

incorrectly, and the accuracy of fault diagnosis reached 

98.75%, which proved the effectiveness of the proposed 

method again. 

6 Conclusion 

In order to improve the fault diagnosis accuracy of 

wind turbine, this paper proposes a wind turbine fault 

diagnosis method based on SABO-VMD-KELM model. 

The conclusions are as follows: 

(1) The SABO algorithm was applied to optimize 

the parameters of VMD and KELM, and the resulting 

SABO-VMD-KELM model achieved an average fault 

diagnosis accuracy rate of 98% for wind turbines. This 

demonstrates the effectiveness of the model in 

diagnosing faults in wind turbines and provides a 

reference method for research in fault diagnosis of 

wind turbines. 

(2) Using the same SABO-optimized VMD to 

decompose the original signal data, the accuracy rate of 

SABO-KELM is higher than that of PSO-KELM, 

demonstrating that SABO-KELM has a clear advantage 

in terms of generalization performance and accuracy. 
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