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Abstract 

With the development of technology and the progress of life, more and more people, regardless of entertainment, learning, or work, 

cannot do without computer desks and cannot put down their mobile phones. Due to prolonged sitting and often neglecting the 

importance of posture, incorrect posture can often lead to health problems such as hunchback, lumbar muscle strain, and shoulder and 

neck pain over time. To address this issue, we designed a computer vision-based human body posture detection system. The system 

utilizes YOLOv8 technology to accurately locate key points of the human body skeleton, and then analyzes the coordinate positions 

and depth information of these key points to establish a criterion for distinguishing different postures. With the assistance of an SVM 

classifier, the system achieves an average recognition rate of 95%. Finally, we successfully deployed the posture detection system on 

Raspberry Pi hardware and conducted extensive testing. The test results demonstrate that the system can effectively detect various 

postures and provide real-time reminders to users to correct poor posture, demonstrating good practicality and stability. 
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1 Introduction 

With the development of modern society, the 

pressure of learning and work is increasing. People often 

need to sit for long periods to work and study, 

maintaining a correct sitting posture for an extended 

period is quite challenging, leading to various poor 

sitting postures such as hunching, leaning, and tilting. 

Prolonged incorrect sitting posture may lead to various 

health issues including hunchback, lumbar muscle strain, 

neck and shoulder pain, myopia, and strabismus, 

seriously affecting physical and mental health. Correct 

posture and posture are crucial for physical health. 

Therefore, we designed a computer vision-based human 

posture correction system aimed at timely reminding 

users of incorrect sitting postures through real-time 

posture recognition and voice broadcast technology, 

correcting erroneous sitting postures, and reducing the 

harm of poor sitting postures to the body. We hope to 

suppress health problems caused by incorrect posture 

from the root, help users improve poor posture, and 

prevent and reduce posture-related health problems. The 

system relies on deep learning training models, with high 

accuracy and real-time performance, while possessing 

good practicality and research significance, thereby 

helping users maintain the correct posture and ensure 

physical health. 

2 System Architecture and Hardware Design 

This system is mainly based on the Raspberry Pi 4B 

processor motherboard and Raspberry Pi Camera 

Module V2 camera. OpenCV is used as the platform for 

visual processing tasks, combined with YOLOv8 for 

object recognition and keypoint detection technology. 

The camera accurately locates the positions of the facial 

features and various skeletal points of the body, 

combined with SVM support vector machine model for 

posture judgment, and implements the function of 

correcting human sitting posture. If the posture is 

incorrect, an alarm and voice prompt will be issued. The 

system architecture is shown in Figure 1. 

The system hardware mainly consists of the main 

processor Raspberry Pi 4B motherboard, camera module 

V2, LCD touchscreen, speaker module, power circuit, etc. 

The processor motherboard receives data from the LCD 

touchscreen to complete user-specified operations 

through parameter settings. Then, it processes the data 

from the camera module to judge and recognize the 

sitting posture, and the speaker module provides 

reminders. This system is compact and supports both 

Windows and Linux operating systems, suitable for small 

and portable designs overall. The circuit connection 

diagram is shown in Figure 2, and the physical 
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appearance of the system is shown in Figure 3. 

 

Figure 1  System Architecture Diagram 

 

Figure 2  Circuit Connection Schematic Diagram 

 

Figure 3  System Physical Appearance 

3 Program and Algorithm Design 

3.1 Program design 

The main program flowchart is shown in Figure 4. 

After successful login and user operations, the model is 

first loaded. Simultaneously, the camera module is 

invoked, and upon collecting data, the captured video 

frames are passed to the system for processing. The 

system identifies the positions of key points such as eyes, 

nose, ears, and shoulders in the video frames. After 

processing with our designed algorithm, the human body 

posture in the video frame can be accurately 

distinguished. If the user adopts poor postures such as 

hunching or leaning, it will be marked as "bad" and a 

voice reminder will be issued; otherwise, it will be 

marked as "good". In addition to correcting poor postures, 

the system also sets reminders for prolonged sitting. If 

the user reaches the preset sitting time, the system will 

also issue a voice reminder. 

 

Figure 4  Main Program Flowchart 

3.2 Algorithm design 

3.2.1 Key-point detection and localization 

In the human posture correction system, keypoint 

detection and localization are crucial stages based on 

computer vision technology. The neural network 

structure of this system is implemented based on the 

state-of-the-art object detection model - YOLOv8n, 

which integrates target detection and keypoint 

localization of the human body. The model network 

structure is divided into three parts: feature extraction 

network, feature fusion network, and detection head. 

Among them, the feature extraction network adopts 

CSPDarknet53, which includes a series of convolutional 

layers and residual blocks to extract high-level features 

from input images. The feature fusion network includes 

convolutional layers and upsampling layers to fuse 

feature maps of different resolutions, in order to better 

adapt to targets of different scales. Finally, the detection 

head consists of a series of convolutional layers and the 

final output layer, used to predict the positions of 

detection boxes and keypoint coordinates. 

 

Figure 5  Key-point Connection Diagram 
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Additionally, we use two-dimensional arrays 

created with Numpy to store the keypoint coordinates 

output by the YOLOv8 model, including the positions of 

eyes, ears, nose, and shoulders. This provides reliable 

data support for subsequent posture analysis in the 

system, thereby achieving precise monitoring and 

analysis of user posture. The schematic diagram of 

keypoint connections is shown in Figure 5. 

 

Figure 6  YOLOv8 Network Architecture 

The YOLOv8 network architecture is depicted in 

Figure 6. It consists of an input end, Backbone, and Neck, 

describing the overall network structure. In YOLOv8, the 

input end adopts adaptive anchor calculation and 

adaptive grayscale padding. The backbone network 

includes Conv, C2f, and SPPF structures. The C2f 

module is mainly used to learn residual features and is 

inspired by the ELAN structure of YOLOv7. By 

introducing more branch cross-layer connections, it 

enhances the gradient flow of the model, forming a 

neural network module with stronger feature 

representation capability. Additionally, the Neck module 

adopts the PAN (path aggregation network) structure to 

enhance the network's ability to fuse features of objects 

at different scales. 

3.2.2 Pose analysis and classification 

In the stage of pose analysis and classification, this 

paper proposes to fuse the keypoint data mentioned 

above into two feature values, f1 and f2. These features 

are then inputted into an SVM classifier to accurately 

assess and classify the user's pose. The specific steps are 

as follows: 

(1) Definition of Data to be Calculated 

We first define the data to be calculated, including 

the coordinates of the left ear, right ear, left shoulder, and 

right shoulder, as well as the distances between these 

points. Specifically, the distance from the left ear to the 

left shoulder is defined as s1, the distance from the right 

ear to the right shoulder is defined as s2, and the distance 

from the left shoulder to the right shoulder is defined as 

s3. These are illustrated in Table 1 below. 

To extract a representative midpoint for the 

positions of the left (right) eye, left (right) ear, and nose, 

and thus represent the center point of the body position, 

we choose to calculate the incenter coordinates of the 

triangle formed by these three points. The incenter is 

equidistant from the three sides of the triangle, making it 

a good representation of the central position of these 

three points. Using Equation 1 and Equation 2, we can 

obtain the coordinates of the left face midpoint, 

respectively. Similarly, we can derive the coordinates of 

the right face midpoint. 

 

Table 1  Data Quantity Table 

Data Definition Value 

The position of the left ear LeftEar {x1,y1} 

The position of the right ear RightEar {x2,y2} 

The position of the left eye LeftEye {x3,y3} 

The position of the right eye RightEye {x4,y4} 

The position of the nose Nose {x5,y5} 

The position of the left shoulder LeftShoulder {x6,y6} 

The position of the right shoulder RightShoulder {x7,y7} 

The position of the midpoint of the left side of the face LFaceCenter {x8,y8} 

The position of the midpoint of the right side of the face RFaceCenter {x9,y9} 

The distance from the midpoint of the left side of the face to the left shoulder Left_face_Shoulder s1 

The distance from the midpoint of the right side of the face to the right shoulder Right_face_Shoulder s2 

The distance from the left shoulder to the right shoulder Shoulder_Shoulder s3 

𝑥8 =
𝑥1√(𝑥3;𝑥1:𝑥2√(𝑥5;𝑥3)2:(𝑦5;𝑦3)

2:𝑥3√(𝑥5;𝑥1)2:(𝑦5;𝑦1)
2

√(𝑥3;𝑥1)2:(𝑦3;𝑦1)
2:√(𝑥5;𝑥3)2:(𝑦5;𝑦3)

2:√(𝑥5;𝑥1)2:(𝑦5;𝑦1)
2
                 (1) 

𝑦8 =
𝑦1√(𝑥3;𝑥1:𝑦2√(𝑥5;𝑥3)2:(𝑦5;𝑦3)

2:𝑦3√(𝑥5;𝑥1)2:(𝑦5;𝑦1)
2

√(𝑥3;𝑥1)2:(𝑦3;𝑦1)
2:√(𝑥5;𝑥3)2:(𝑦5;𝑦3)

2:√(𝑥5;𝑥1)2:(𝑦5;𝑦1)
2
                 (2) 
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Equation (3) represents the value of s1, Equation (4) 

represents the value of s2, and Equation (5) represents 

the value of . 

𝑠1 = √(𝑥6 − 𝑥8)
2 + (𝑦6 − 𝑦8)

2       (3) 

𝑠2 = √(𝑥7 − 𝑥9)
2 + (𝑦7 − 𝑦9)

2       (4) 

𝑠3 = √(𝑥6 − 𝑥7)
2 + (𝑦6 − 𝑦7)

2       (5) 

(2) Calculation of Feature Values 

Let feature value 1 be f1(to exclude the influence of 

the distance between the subject and the camera, 

normalization is required), as shown in Equation (6). 

𝑓1 =
|(𝑠1;𝑠2)×10|

𝑠3
             (6) 

Feature value f1 is used to measure the tendency of 

the user to lean to the left or right. Based on anatomical 

observations and experimental results, when the body is 

not leaning in a seated position, from a frontal 

perspective, the torso and neck should maintain a 

relatively stable vertical position, with the body's left 

and right sides being relatively symmetrical and the 

head positioned above the centerline. Therefore, when 

the user maintains good posture, the f1value should be 

close to 0, indicating that the user's body is not leaning 

to the left or right. 

From experimental results, it can be observed that 

when the user leans to the left or right, the torso and neck 

will exhibit a tilting state on one side, causing noticeable 

displacement of the torso and head relative to the other 

side. This will cause the f1  value to deviate from 0, 

leaning towards the left or right. Specifically, when the 

user leans to the left or right, the value of f1 will be larger. 

Let feature value 2 be f2(to exclude the influence of 

the distance between the subject and the camera, 

normalization is required), as shown in Equation (7). 

𝑓2 =
(𝑠1:𝑠2)

𝑠3
               (7) 

This feature value f2is primarily used to determine 

whether the user exhibits a tendency to hunch or slouch. 

Based on anatomical observations and experimental 

results, when the body is in an upright seated position, 

the torso and neck are in a natural upright state, the angle 

between the body and the ground is relatively stable, and 

the head position relative to the shoulders is also normal. 

Therefore, when the user maintains good posture, the f2 

value should be close to an ideal baseline value, typically 

between 1.2 and 1.4. 

From experimental results, it can be observed that 

when the user hunches or slouches, the torso and neck 

will exhibit a certain degree of forward inclination, and 

the head position relative to the shoulders will be lower. 

This results in a decrease in the f2 value, deviating from 

the baseline value of 1.33. Specifically, when the user 

hunches or slouches, the f2value may be below 1.1, or 

even below 0.9. 

(3) Error Threshold Analysis 

Physiological Differences: There are inherent 

physiological differences in the human body's structure 

and form, leading to minor tilting or asymmetry in 

different individuals when seated. These physiological 

differences may stem from factors such as skeletal 

structure, muscle development, body proportions, etc., 

making it difficult to completely eliminate fluctuations in 

feature values even in a good seated posture. 

Environmental Factors: In real-world usage 

scenarios, users may be in different environmental 

conditions, such as different chair heights, desk heights, 

lighting conditions, etc. These factors may affect the 

user's posture performance. Even if users try to maintain 

correct posture, changes in environmental factors may 

still cause slight fluctuations in feature values. 

Postural Adjustments: Users may make minor 

adjustments to their posture during use, such as slight 

body rotation or adjusting the comfort of their sitting 

position. Although these minor postural adjustments do 

not affect the overall quality of the seated posture, they 

may lead to slight changes in feature values. 

Considering the above factors, it is reasonable to set 

a certain error range for feature values in practical 

applications. This error range can tolerate minor 

variations caused by physiological differences, 

environmental factors, and postural adjustments, while 

ensuring the stability of the system and user experience. 

This design not only reduces false positives but also 

better adapts to individual differences among users and 

actual usage environments, thereby improving the 

reliability and practicality of the system. 

3.2.3 Classification based on support vector machine 

In this study, we employ the powerful machine 

learning algorithm of Support Vector Machine (SVM) for 

target classification. SVM shows significant advantages 

in addressing problems associated with small datasets, 

non-linearity (by introducing slack variables), and 

high-dimensional pattern recognition (through kernel 

functions). Based on the sample data, an SVM model is 

constructed, and an appropriate kernel function is 

selected. The kernel function is shown in Equation (8). 

𝑘(𝑥𝑖 , 𝑥𝑗) = 𝑒𝑥𝑝(−
∥𝑥𝑖;𝑥𝑗∥

2𝜎2

2

)          (8) 

This paper opts for the Gaussian kernel due to its 

good adaptability and the ability to control model 

complexity by adjusting the kernel width. The SVM 

model from the scikit-learn library is used for data 

training, validation, and testing. First, samples in the 

training set, validation set, and test set are labeled. Then, 

using a grid search method, the penalty parameter C and 

kernel parameter σ2 are each assigned N and M values, 

respectively. Different SVMs are trained for each of the 

N×M combinations of (C,σ2), and their generalization 

accuracy is estimated. The combination that yields the 

highest generalization accuracy among the N×M 



 

Mechanical Engineering Science  Vol. 6  No.1  2024                                                                         5 

combinations of (C, σ2 ) is selected as the optimal 

parameter set. To estimate the generalization accuracy, 

this paper employs a 5-fold cross-validation method. 

4 System Implementation and Testing 

4.1 System implementation and results display 

Based on the above functional requirements and 

design plans, we deployed the system on Raspberry Pi 

hardware. The software developed in this paper was 

written using PyCharm software. The system interface is 

shown in Figure 7, enabling the system to receive human 

target keypoint data and provide intuitive graphical 

display and posture anomaly identification. 

 

Figure 7  System Interface 

For each type of posture including normal sitting 

posture, hunchback, head tilt to the left, head tilt to the 

right, body lean to the left, and body lean to the right, the 

system provides a health assessment. The assessment 

results are shown in Figure 8: normal sitting posture is 

labeled as "good" with no voice reminder triggered, 

while hunchback, head tilt to the left, head tilt to the right, 

body lean to the left, and body lean to the right are 

labeled as "bad" with voice reminders triggered. 

 

Figure 8  Test Results Diagram 

4.2 Testing method and performance estimation 

To accurately evaluate the performance of the 

system in real-world applications, we set up a testing 

environment that meets the requirements. We positioned 

the device directly in front of the subject to ensure that 

the camera can fully capture the upper body of the test 

subject, with a depth of 1 meter. An example of the setup 

is shown in Figure 9. 

 

Figure 9  Example Setup for Positioning and Display 

We first established criteria to distinguish 

between different sitting postures, and then conducted 

health assessments based on these criteria. In the study, 

we had 10 volunteers (both male and female) sit 

directly facing the camera and naturally adopt 6 

different sitting postures. Each posture needed to be 

varied continuously, and 100 different images were 

captured for each posture. In the end, we established 

the following sitting posture database: including 6 

postures, with 100 images for each posture, totaling 

6000 images. Through YOLOv8 keypoint extraction, 

we calculated the f1 and f2 values proposed in this 

paper, and then the SVM classifier made judgments on 

the health of sitting postures. 

For performance evaluation, the data obtained from 

our volunteers were divided into ten groups per person, 

and the test results are shown in Table 2. The 

performance of the SVM classifier is shown in Table 3. 

Table 2  Average Feature Values of Volunteers. 

Feature 

Value 

Normal 

Sitting 

Posture 

Hunchback 

Head 

Tilt 

Left 

Head 

Tilt 

Right 

Body 

Lean 

Left 

Body 

Lean 

Right 

f1 0.031 0.027 1.407 1.361 2.054 1.912 

f2 1.352 0.971 1.191 1.208 1.115 1.186 

Table 3  SVM Classifier Test Results. 

Index Recall Precision 

1 0.964 0.964 

2 0.929 0.945 

3 0.964 0.982 

4 0.929 0.945 

5 0.964 0.964 

6 0.929 0.929 

7 0.951 0.982 

8 0.975 0.929 

9 0.964 0.942 

10 0.926 0.934 
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To validate the overall accuracy of the system's 

judgments, we invited an additional 10 volunteers for 

testing. Similarly, each person performed 6 different 

sitting postures, and 10 frames were captured for each 

posture. Finally, the accuracy of the judgments was 

evaluated based on this standard. 

Table 4 shows that the detection accuracy based on 

this standard is relatively high (with an average 

accuracy of around 95%). Through testing, we found 

that detecting one frame per second in the actual 

process is sufficient to meet the requirements. 

Therefore, this algorithm can basically meet the 

requirements for accuracy and real-time performance of 

the sitting posture detection system. 

If the judgment method of "if joint in range, good; 

else, bad" is adopted, the test results are suboptimal due 

to variations in body proportions among individuals. 

This stands in stark contrast to the method employed in 

the previous discussion. 

Table 4  Sitting Posture Recognition Rate 

Sitting Posture 

Type 
Total Count Accuracy_svm 

Accuracy_In 

a range 

Normal Sitting 

Posture 
100 99% 90% 

Hunchback 100 96% 87% 

Head Tilt Left 100 94% 91% 

Head Tilt Right 100 93% 92% 

Body Lean Left 100 92% 89% 

Body Lean Right 100 93% 91% 

5 Conclusion 

This paper proposes a computer vision-based 

human posture correction system with the aim of 

correcting poor sitting postures. The camera module 

v2 combined with YOLOv8 human keypoint detection 

technology effectively captures the positions of key 

points on the user's body. The algorithm proposed in 

this paper preprocesses the position information of 

human key points into feature values and 

automatically judges the sitting posture situation based 

on the SVM method. Experimental results show that 

the average accuracy of judging 6 types of sitting 

postures reaches 95%. However, this design has 

certain limitations; it cannot detect positions 

arbitrarily. If the human body is not within the range 

of the camera, the required position information of the 

human key points cannot be obtained. This limitation 

is related to the placement of the camera. According to 

the positioning proposed in this paper, most scene 

requirements can be fulfilled. 

Fund Projects: This work is funded by the Science and 

Technology Project of Hebei Education Department (No. 
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