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Abstract 

Aiming at the problems that the original Harris Hawk optimization algorithm is easy to fall into local optimum and slow in finding 

the optimum, this paper proposes an improved Harris Hawk optimization algorithm (GHHO). Firstly, we used a Gaussian chaotic 

mapping strategy to initialize the positions of individuals in the population, which enriches the initial individual species 

characteristics. Secondly, by optimizing the energy parameter and introducing the cosine strategy, the algorithm's ability to jump out of 

the local optimum is enhanced, which improves the performance of the algorithm. Finally, comparison experiments with other intelligent 

algorithms were conducted on 13 classical test function sets. The results show that GHHO has better performance in all aspects 

compared to other optimization algorithms. The improved algorithm is more suitable for generalization to real optimization problems. 
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1 Introduction 

With the advancement of technology and the 

complexity of problems, optimization tasks often exhibit 

characteristics such as multi-objective, large-scale, 

uncertainty, and complexity, which are difficult to 

resolve
 [1]

. In the real world, most problems have 

multiple constraints and optimization objectives, while 

traditional optimization algorithms
 [2-3]

 mainly focus on a 

single objective, which makes it difficult to solve 

real-world problems
 [4-7]

. It is due to these shortcomings 

of traditional optimization algorithms that metaheuristic 

optimization algorithms have emerged, which are better 

able to solve complex engineering problems
 [8]

. 

Metaheuristic algorithms are mostly inspired by natural 

phenomena and are considered as the best optimization 

algorithms globally due to their superior performance. 

With the continuous exploration of optimization 

algorithms, many metaheuristic algorithms have been 

generated, such as Dragonfly Algorithm
 [9]

, Snake 

Optimizer 
[10]

, White Shark Optimize 
[11]

, Sine cosine 

algorithm 
[12]

, Atomic Orbital Search 
[13]

, etc. Harris 

Hawk optimization algorithm is a metaheuristic 

optimization algorithm proposed by Haidari et al. in 

2019. 
[14]

. The algorithm can utilize simpler and practical 

processing methods to simplify the problem and has 

relatively good performance. However, the Harris Hawk 

optimization algorithm suffers from low precision of the 

results and low values of convergence speed. Therefore, 

to solve these problems, we improved the algorithm and 

named it GHHO. Firstly, population initialization is a 

crucial step in the optimization algorithm, which plays a 

vital role in both the performance and convergence speed 

of the algorithm. The Gauss mapping method is used to 

obtain the initial HHO population, which solves the 

problem of non-uniform distribution of initial positions 

in the search space, and makes the population 

distribution more uniform and diverse. Secondly, the 

computational accuracy of the algorithm is improved by 

changing the original parameters through Gauss chaotic 

mapping. Finally, a cosine strategy is introduced into the 

algorithm, which prevents the algorithm from falling into 

a local optimum. 

2 Harris Hawks Optimization (HHO) 

The Harris’ hawk is found mainly in the United 

States and is a fierce bird. They will cooperate with each 

other in the hunting process, and increase the success 

rate through coordinated hunting. During the hunting 

process, Harris's hawks often use "raids", where they 

attack through multiple individuals and multiple angles 

of encirclement. This "raiding" behavior highlights the 

foraging characteristics of this species, and makes it 

difficult for prey to escape from encirclement due to the 

rapidity and frequency of their attacks. This species also 

changes its hunting mode according to the escape 

characteristics of the prey, so that the hunting process 

can be adapted to the situation and the prey can be 

obtained efficiently. Heidari et al. fully studied the 

hunting behavior of Harris's hawk and constructed the 

mathematical model of HHO by combining with Gray 
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Wolf Optimization (GWO) algorithm. We assume the 

behavior of Harris Hawk in acquiring prey as two phases: 

exploration and exploitation. The amount of escape 

energy E will determine whether the algorithm is in the 

exploratory or exploitation stage; when in the 

exploitation stage, the attack strategy can be categorized 

into soft and hard besiege according to the escape energy 

when the random number r is not less than 0.5. On the 

contrary, when r is less than 0.5, it can also be 

categorized into soft besiege with progressive rapid dives 

and hard besiege with progressive rapid dives based on 

the escape energy. 

2.1 Exploration phase 

When |𝐸| ≥ 1, GHHO is in an exploratory phase. 

The location update can be categorized into two 

strategies based on the Harris's hawk's perching situation 

q, as shown in Eq (1-2): 

1 2
( 1) ( ) | ( ) 2 ( ) | 0.5

rand rand
X t X t r X t r X t q     
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(2) 

Where X(t+1) is the coordinates of the Harris’ hawk at 

t+1 iteration; Xrand(t) is the coordinates of the species in 

the randomized case at the tth iteration; Xrabbit(t), Xm(t) 

are the prey-specific coordinates at the tth iteration, and 

the coordinates of the midpoint of the Harris’ hawk; LB, 

UB are numerical range thresholds; r1 , r2 , r3 and r4 are 

random numbers inside (0,1). 

During the iteration process, the escape energy E 

decreases gradually as shown in Eq (3): 

0
2 (1 )

t
E E

T
 

                (3)
 

Where T , t and E0 represent the maximum number of 

iterations, the current number of iterations and the initial 

energy value of E, respectively. 

2.2 Exploitation phase 

When |E|＜1, hunting can be further categorized 

into four different strategies. 

a. Soft besiege 

When r ≥  0.5 and |𝐸| ≥ 0.5 , the algorithm 

implements this strategy as shown in Eq (4), with J being 

the escape of the besieged species. r5 is a random number 

between 0 and 1 

( 1) ( ) ( ) ( ) ( )
rabbit rabbit

X t X t X t E JX t X t    
   (4) 

5
2(1 )J r 

                  (5) 

b. Hard besiege 

When r ≥0.5 and |𝐸| < 0.5, Harris’ hawk adopts a 

hard besiege, see Eq (6). At this point, the Harris's hawk 

will be a one-strike winner as the prey has been escaping 

resulting in a decrease in escape level. 

( 1) ( ) ( ) ( )
rabbit rabbit

X t X t E X t X t   
    

(6) 

c. Soft besiege with progressive rapid dives 

When still |𝐸| ≥ 0.5 but r ＜ 0.5, since the prey 

has enough stamina to escape, the Harris’ hawk will start 

a high-speed dive, which is still a soft besiege. If the raid 

is unsuccessful, it will turn on random wandering Z , and 

if the wandering is unsuccessful it will return to the 

initial position, the strategy is shown in equation (7-8): 

( ) ( ) ( )
rabbit rabbit

Y X t E JX t X t  
      

 (7) 

( )Z Y S LF D                (8) 

Where S and D represent the random number and 

dimension, respectively. LF is the levy flight function, as 

shown in Eq (9): 
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Where, u, v are random numbers in the range of (0,1) and 

the value of β is 1.5. 

d. Hard besiege with progressive rapid dives 

When |𝐸| < 0.5 and r <0.5, the Harris’ hawk based 

on the location of the center of the group in relation to 

where the prey is located, with reference to Eq (10) for 

the specific strategy. 

( ) ( ) ( )
rabbit rabbit m

Y X t E JX t X t        (10) 

3 Improved Harris Hawk Optimization 

(GHHO) 

3.1 Initialization of Gauss chaos mapping 

HHO is randomly generated by the computer, which 

tends to make the individual fitness of the initial 

population deviate from the optimal fitness, thus making 

the algorithm converge slowly and generating high 

running time, leading to the degradation of the solution 

quality. The author adopts Gauss chaotic mapping to 

initialize the population and ensure the diversity of the 

population. As shown in Eq (11): 
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3.2 Optimization of energy parameters 

In response to the suspension of the HHO due to 

early convergence, the author uses Gauss chaotic 

mapping to optimize the energy parameter E. Finally, it 

is shown that this method can improve the function 

difficulties and improve the accuracy and robustness. 

The improvement is shown in Eq (11): 

0
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3.3 Cosine strategy 

In order to solve the problem of low accuracy of 

results and easy to fall into local optimum in the use of 

HHO method, the author introduced the cosine strategy 

in Eq (2), which improves the performance of the 

optimization algorithm solution. As shown in Eq (13): 

3 4 5( 1) ( ( ) ( )) ( ( )) 0.5cos( 1
rabbit m

X t X t X t r LB r UB LB qr         ）

(13) 

Where, r5 is a random number lies in the range of (0, 1). 

3.4 Algorithm flow chart 

Combining the above improvement strategies, the 

GHHO algorithm flow is shown in Figure 1. 

Step 1: Gauss population initialization, set population 

size N, dimension D, initialize each parameter. 

Step 2: Gauss optimizes the energy parameter E. 

The optimized E is applied to Eqs. (4), (6), (7) and (10) 

to update the population position. 

Step 3: Introduce the cosine strategy into Eq. (2) in 

the exploratory phase, a phase in which the population 

will use Eq. (13) to update its position. 

Step 4: Determine whether the termination 

condition is reached, if so, output the optimal value; 

otherwise, return to step 2. 

The GHHO algorithm records the position of the 

population from the first iteration and each iteration is 

compared with the results of the last iteration until the 

last iteration is completed. The best candidate solution 

saved during the iterations is used as the final solution to 

the problem after the algorithm is completely finished. 

 

Figure 1  Flow chart of GHHO 

Table 1  Statistical results of test functions 

Function  GWO BOA MFO GA PSO GHHO 

F1 
Avg 3.64E-174 1.93E-17 1.79E+03 1.63E-02 7.55E-04 0.00E+00 

Std 0.00E+00 9.38E-19 3.87E+03 4.59E-03 7.06E-04 0.00E+00 

F2 
Avg 1.22E-99 1.51E-14 2.96E+01 3.19E-01 1.43E-02 2.64E-270 

Std 2.84E-99 1.74E-15 2.20E+01 4.70E-02 7.87E-03 0.00E+00 

F3 
Avg 1.97E-55 2.02E-17 1.36E+04 2.44E+02 1.80E+01 0.00E+00 

Std 1.35E-54 9.95E-19 1.20E+04 4.89E+02 4.89E+00 0.00E+00 

F4 
Avg 8.73E-44 1.64E-14 1.42E+01 1.57E-01 8.77E-01 1.17E-268 

Std 4.17E-43 7.52E-16 8.62E+00 1.89E-02 1.48E-01 0.00E+00 

F5 
Avg 2.59E+01 2.90E+01 3.11E+04 3.40E+01 9.60E+01 2.32E-02 

Std 8.57E-01 2.59E-02 4.79E+04 2.11E+01 7.34E+01 2.44E-02 

F6 
Avg 1.28E-01 4.86E+00 2.10E+03 7.85E+00 6.80E-04 2.07E-05 

Std 1.91E-01 5.84E-01 3.43E+03 1.01E-01 7.38E-04 3.55E-05 

F7 
Avg 1.23E-04 2.26E-04 1.68E+00 8.56E-01 1.93E-01 1.84E-05 

Std 7.87E-05 8.01E-05 4.30E+00 2.29E-01 8.26E-02 5.46E-06 

F8 
Avg -6.45E+03 -4.78E+03 -9.00E+03 -2.66E+03 -6.81E+03 -1.07E+04 

Std 6.60E+02 3.65E+02 8.50E+02 5.04E+02 8.56E+02 1.93E+03 

F9 
Avg 0.00E+00 1.89E+00 1.18E+02 1.82E+00 4.86E+01 0.00E+00 

Std 0.00E+00 1.89E+01 3.82E+01 5.46E-01 1.35E+01 0.00E+00 

F10 
Avg 8.03E-15 1.04E-14 8.03E-15 8.41E-02 1.81E-02 4.44E-16 

Std 9.44E-16 3.60E-15 9.44E-16 1.60E-02 1.10E-02 0.00E+00 

F11 
Avg 4.52E-04 0.00E+00 4.52E-04 5.91E-04 1.39E-02 0.00E+00 

Std 2.30E-03 0.00E+00 3.30E-03 2.75E-04 1.21E-02 0.00E+00 

F12 
Avg 1.28E-02 2.86E-01 2.28E-02 2.69E+00 4.08E-06 6.25E-07 

Std 9.31E-03 8.30E-02 9.31E-03 4.39E-02 4.43E-06 8.09E-07 

F13 
Avg 1.55E-01 1.69E+00 2.55E-01 2.93E-03 9.67E-04 7.70E-05 

Std 1.25E-01 4.39E-01 3.24E-01 7.13E-04 2.62E-03 1.46E-04 
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Figure 2  Convergence Curve 

4 Experimental Design 

This experiment is designed to examine the 

performance of each algorithm with 13 typical global 

optimization test functions from the literature 
[15]

. These 

classical functions are categorized into single-peak and 

multi-peak functions. 

We compare GHHO with GWO 
[16]

, BOA
[17]

, 

MFO
[18]

, GA
[19]

 and PSO 
[20]

respectively. During the 

experiments, the population size and dimension of each 

algorithm is set to 30 and the maximum number of 

iterations is set to 1000. 

Table 1 presents the competitive results of the 

GHHO algorithm on F1-F13. It is clear that GHHO 

performs well in terms of overall performance, 

specifically, GHHO obtains the best solution for all 

tested functions except F8. Figure 2 demonstrates the 

convergence process of all algorithms except F8, and 

GHHO exhibits higher convergence accuracy compared 

to other optimization algorithms, which also validates the 

experimental data in Table 1. 
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These results show the excellent performance of the 

GHHO algorithm in dealing with single-peak benchmark 

functions (F1-F7) and multi-peak functions (F8-F13), 

which further validates the accuracy and reliability of the 

GHHO algorithm as well as its excellent performance on 

different types of optimization problems. 

5 Conclusion 

In this work, an optimization algorithm GHHO with 

better performance is proposed based on HHO. Firstly, 

Gaussian chaotic mapping strategy is used to initialize 

the population. Secondly, by optimizing the energy 

parameters and introducing the cosine strategy, GHHO 

possesses a better performance. Finally, the effectiveness 

of GHHO is verified by comparing it with different 

intelligent optimization algorithms on test functions. 
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