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Abstract: 
Due to the difficulty that excessive feature dimension in fault diagnosis of rolling bearing will lead to the decrease of classification 
accuracy, a fault diagnosis method based on Xgboost algorithm feature extraction is proposed. When the Xgboost algorithm classifies 
features, it generates an order of importance of the input features. The time domain features were extracted from the vibration signal 
of the rolling bearing, the time-frequency features were formed by the singular value of the modal components that were decomposed 
by the variational mode decomposition. Firstly, the extracted time domain and time-frequency domain features were input into 
the support vector machine respectively to observe the fault diagnosis accuracy. Then, Xgboost algorithm was used to rank the 
importance of features and got the accuracy of fault diagnosis. Finally, important features were extracted and the extracted features 
were input into the support vector machine to observe the fault diagnosis accuracy. The result shows that the fault diagnosis accuracy 
of rolling bearing is improved after important feature extraction in time domain and time-frequency domain by Xgboost.
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1. Introduction
Nowdays, the requirement of safety and reliability of 
mechanical products is higher and higher[1]. The fault 
diagnosis research on the most widely used rolling bearing 
can improve the safety of mechanical operation.

Fault diagnosis of rolling bearing usually consists of 
feature extraction and fault identification. The commonly 
used feature extraction methods include time domain, 
frequency domain and time-frequency domain. Zhang et 
al. [2] diagnosed the fault of rolling bearing by extracting 
the time domain features of the vibration acceleration 
signal of the rolling bearing, such as kurtosis. Kurtosis is 
sensitive to fault classification [3], while some other time 
domain features are not sensitive to fault classification, 
which may lead to low accuracy of fault recognition 
due to too many feature dimensions. Empirical Mode 
Decomposition (EMD) can adaptively decompose the 
signal into a series of intrinsic mode functions from 
high frequency to low frequency. However, this method 
is easy to mode mixing. In 2014, Dragomiretskiy et al. 
[4] proposed a new adaptive signal processing method-
Variational Modal Decomposition (VMD). The VMD 

method iteratively searched the optimal solution of the 
Variational model to determine the frequency center and 
bandwidth of each intrinsic modal component, which can 
realize the frequency domain subdivision of signals and the 
effective separation of each signal component. However, 
the impact of penalty parameter α  and decomposition 
number K should be considered in VMD decomposition. 
Envelope entropy can be used to represent the sparse 
characteristics of signals. After signal decomposition, if 
there are more noise in signal components, the envelope 
entropy will be smaller. The optimal combination (K, α ) 
can be obtained by taking the minimum value of envelope 
entropy as the objective function [5]. Wang et al. [6] used 
particle swarm optimization algorithm to optimize the 
VMD method to obtain the optimal (K, α ) combination 
to decompose the signal. Liu et al. [7] further improved it 
by using particle swarm optimization based on genetic 
variation. Extracting the features that can easily distinguish 
different fault types are the most important for fault 
diagnosis [8]. Swarm intelligence optimization algorithms 
tend to fall into the local optimal solution, and the modal 
components obtained by VMD method decomposition 
do not completely represent fault characteristics (fault 
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frequency is not obvious for other noise information and 
interference).

At present, fault recognition systems based on 
machine learning algorithms are widely used. Support 
Vector Machine (SVM) method [11] has been widely used in 
many fields such as fault diagnosis and pattern recognition 
[12]. In terms of nonlinear problems, SVM introduces 
penalty parameters and kernel functions to transform 
them into linear problems in high dimensional space, so as 
to achieve effective classification. Boosting dcecision tree is 
an extensive and efficient integrated learning method. As a 
new method of boosting decision tree, Xgboost algorithm 
has been widely applied in economy and medical [13], and 
has achieved good results.

2. Xgboost Algorithm
The Xgboost algorithm is short for eXtreme Gradient 
Boosting. It is a c++ implementation of the gradient 
boosting machine algorithm developed by Dr. Chen 
Tianqi of Washington University [14]. The biggest advantage 
of Xgboost is that it can automatically take advantage 
of the CPU's multiple threads to run in parallel, while 
also improving the algorithm to improve the accuracy. 
Compared with Xgboost algorithm, the traditional 
Gradient Boosting Decision Tree (GBDT) algorithm 
only uses the information of the first derivative and the 
residual of the first n-1 tree to train the nth tree, which is 
difficult to realize distribution. Xgboost performs a second 
order taylor expansion of the loss function (the objective 
function) and adds a regular term to the loss function to 
optimize the overall solution, so it can be used to weigh the 
decline of the objective function and the complexity of the 
model to avoid overfitting the model.

Suppose the model has k decision trees.
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Taylor expansion of the loss function can be written as
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Remove the constant term , and the loss function as
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The algorithm is transformed from traversing the 

sample to traversing the leaf node. Let })({ jxqiI ij ==  
be defined as the j-th leaf point.
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Substitute the optimal solution into the objective 

function
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Xgboost is a greedy algorithm. Each training will add 

segmentation to the existing leaf nodes. Suppose L and 
R are the set of left and right nodes after segmentation. 
Information gain is as equation (12)
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As can be seen from the above formula, Xgboost 

uses a certain value after division to subtract a certain 
value before division. In order to control the growth of the 
tree, the algorithm adds a threshold value γ . Only when 
the information gain is greater than the threshold value, 
the algorithm allows the nodes to segment. It is also the 
coefficient of the leaf nodes in the regular term, so it is 
equivalent to pre-pruning the tree model while optimizing 
the loss function.

The Xgboost algorithm uses the decision tree model 
to classify the attributes of child nodes, and expresses the 
feature importance to the current classifier through the 
product of weight and leaf nodes. Because Xgboost uses the 
idea of integration (grouping multiple weak classifiers into 
one classifier), it adds up the importance of the same feature 
to multiple trees (sorted by different attributes) and gets the 
F score for the importance of the feature throughout the 
classification process.

3. Feature Extraction 

3.1 Data 
The vibration acceleration signal data [15] obtained by 
simulating different states of rolling bearings in the electrical 
engineering laboratory of Case Western Reserve University 
(CWRU) is taken as the object (the test rig picture is shown 
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in fig.1). It is known that SKF deep groove ball bearing 
model 6205-2RS JEM was selected for the experiment, fault 
points with fault diameters of 0.178mm were introduced 
by manual discharge operation. The sampling frequency of 
vibration signal is 12kHz, and the motor speeds are 1797r/
min. In this paper, the early vibration signal data are used 
to research.

Figure 1 The test rig of CWRU. As shown in Figure 1 
above, the test stand consists of a 2 hp motor (left), a torque 
transducer/encoder (center), a dynamometer (right), and 
control electronics (not shown). The test bearings support 
the motor shaft. Single point faults were introduced to the 
test bearings using electro-discharge machining with fault 
diameters of 7 mils, 14 mils, 21mils, 28 mils, and 40 mils (1 
mil=0.001 inches). 

3.2 Data Analysis
It is assumed that the four states of the rolling bearing are 
healthy, bearing element fault, outer ring fault and inner 
ring fault, and the four states are represented by 0, 1, 2 and 3 
respectively. Fig.2 to 5 are respectively the vibration signals 
of the bearing in four states (the data was normalized). It 
can be seen that the fault type of the bearing can hardly 
be distinguished by the time domain signals of the rolling 
bearing. Fig.6 shows a series of modal components and 
corresponding spectrum obtained by VMD (K=6,α
=2000) of no.105 data and bearing signals at the driver end 
of the test bench. The envelope spectrum of the first modal 
component was obtained as shown in fig.7. It was found 
that the inner ring fault frequency could be obtained, but 
it was not obvious. Fig.8 is the envelope spectrum obtained 
by enveloping the second modal component, and it can be 
seen that the fault characteristic frequency was obtained 
within the allowable error range. After enveloping all the 
modal components, it was found that only the second 
modal component had obvious fault characteristics, so it 
is necessary to extract the features. The failure frequency 
calculation formula of the inner ring [16] is as follows

; Inner ring failure frequency (13)

; Rotational frequency (14)
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Figure 2 Healthy state vibration signal. The data of fig-
ure 2 to 8 were normalized.
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Figure 3 Outer ring fault vibration signal
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Figure 4 Bearing element fault vibration signal
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Figure 5 Inner ring fault vibration signal

Figure 6 Modal function and spectrum of VMD. The 
inner ring fault signal composed of 10000 data points was 
decomposed into six modal compoments.
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Figure 7 Envelope spectrum of the 1st modal compo-
nent. Fault frequency is not obvious.
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Figure 8 Envelope spectrum of the 2nd modal compo-
nent. Fault frequency is obvious.

3.3 Time Domain Feature Extraction
The 10 time domain features of bearing signals were 
extracted: peak 0f , peak index 1f , skewness 2f , kurtosis

3f , pulse index 4f , root mean square value 5f , kurtosis 
factor , margin index 7f , waveform index

8f  and root 
square amplitude 9f , and the above features are composed 
into the vector F=[ 0f , 1f ,..., 9f ]. The early bearing 
vibration data of CWRU were extracted, and 1024 points 
were taken as a group, 15 sets of time domain eigenvectors 
were extracted respectively from 4 kinds of load (speed) 
and 4 kinds of state types (in which the fault diameter 
is 0.178mm), and 240 sets of data were divided into 160 
training sets and 80 test sets.
3.4 Time-Frequency Feature Extraction
In literature [17], the frog jump algorithm was used to 
optimize the variational modal decomposition by taking 
the minimum value of envelope entropy as the objective 
function. The number of modal function K=6 or 7 and 
the coefficient of quadratic penalty α =2000 or 3000 were 
obtained for different fault states.

Same as 3.3, the variational mode decomposition 
of K=6 andα =2000 was performed on the bearing data 
with 1024 points as a group. The six modal components 
obtained by decomposition of the signal are composed into 
the modal matrix, and the singular value decomposition 
(SVD) was applied to the modal matrix. 1 set of feature 
vectors is denoted as F= , a 
total of 240 groups, which were divided into 160 training 
groups and 80 test groups.

4. Fault Identification

4.1 Fault State Recognition Based on Time Domain 
Feature
1) Input the obtained time domain feature vectors into 
the support vector machine after grid optimization for 
classification [18] (optimization penalty parameter c and 
radial basis kernel function parameter g and c, g∈[2-15, 
215]), and the classification accuracy was 93.125%, as shown 
in fig.9.



 Mechanical Engineering Science | Vol. 1 | No.2 | 2019 5 

2) Input data into xgboost after parameter adjustment 
(learning rate =0.01, number of trees n=1000), got the 
accuracy of 91.25%, and got the importance order of time 
domain features, as shown in fig.10.

3) Take the top five features, namely peak, root mean 
square value, kurtosis factor, waveform index and root 
square amplitude were taken to form the feature vector 

 and input it into the SVM 
after parameter adjustment, and the accuracy was 95.625%, 
as shown in fig.11.
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Figure 9 Time domain feature classification accuarcy. 
In the range of c and g, grid search was carried out to get 
the maximum accuracy.
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Figure 10 Order of importance of time domain fea-
tures. A histogram obtained by ranking input time domain 
features by importance by xgboost.
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Figure 11 Classification accuracy after time domain 
feature extraction. After feature extraction,the accuracy 
obtained by grid search within the range of c and g.

4.2 Fault State Recognition Based on Time-Frequency 
Domain Feature
1) Input the time-frequency domain feature vectors into 
the support vector machine after grid optimization for 
classification (c, g∈[2-15, 215]), and obtain the classification 
accuracy was 94.375%, as shown in fig.12.

2) Input data into Xgboost after parameter adjustment 
(learning rate =0.1, number of trees n=500), got the 
accuracy was 86.25%, and the importance order of features 
was obtained, as shown in fig.13.

3) Take the top five features features 0f , 1f , 3f , 4f , 
5f , and compose the vector F'=[ 0f , 1f , 3f , 4f , 5f ], and 

input it into the SVM which was adjusted, and the accuracy 
was 95%, as shown in fig.14.
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Figure 12 Time-frequency domain feature classifica-
tion accuracy.
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Figure 13 Order of importance of singular values
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domain feature extraction
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4.3 Result Analysis
It can be seen from 4.2 and 4.3 that the Xgboost algorithm 
can improve the accuracy of fault diagnosis by ranking 
the time domain and time-frequency domain features 
respectively and extracting important features for fault 
diagnosis. 

Doing 4 sets of experiments according to the method 
proposed in this article, and the results are presented in 
Table.1 and Table.2, it can be seen that the proposed method 
is more accurate than SVM and Xgboost algorithm.

Table.1. Accuracy of time domain feature extraction

Data
SVM
(%)

Xgbooxt
(%)

Xgbooxt+SVM
(%)

1 93.125 91.5 95.625

2 83.75 75.625 85.625

Table.2. Accuracy of time-frequency domain feature 
extraction

Data
SVM
(%)

Xgbooxt
(%)

Xgbooxt+SVM
(%)

1 94.375 86.25 95

2 87.5 70 88.75

5. Conclusion
In view of the influence of noise and other information on 
signal feature extraction in bearing fault diagnosis, Xgboost 
algorithm is used in this paper to order the importance 
of features, the important features in time domain and 
time frequency domain are extracted and fault diagnosis 
studied. Through the study, the conclusions are as follows:

1) For fault diagnosis of rolling bearing, some 
features directly obtained by feature extraction method 
do not play a role in fault diagnosis. On the contrary, as 
the dimension of feature vector increases, overfitting and 
other phenomena will occur. The results of signal analysis 
show that the accuracy of fault diagnosis can be improved 
by using Xgboost algorithm to prioritize the features of 
signals in time domain and time-frequency domain, and 
by extracting important features to reduce the feature 
dimension for fault diagnosis.

2)The VMD algorithm optimized by group intelligence 
algorithm tends to fall into the local optimal solution. The 
mode matrix composed by VMD is decomposed by SVD 
to construct the feature vector, and the important features 
are extracted by Xgboost algorithm, which can improve the 
accuracy of fault diagnosis.
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