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Abstract:

This work focus on the mechanical behaviors, which are related to the size effect, functionally graded (FG) effect and Poisson effect, of
an axially functionally graded (AFG) micro-beam whose elastic modulus varies according to sinusoidal law along its axial direction.
The displacement field of the AFG micro-beam is set according to the Bernoulli-Euler beam theory. Employing the modified couple
stress theory (MCST), the components of strain, curvature, stress and couple stress are expressed by the second derivative of the
deflection of the AFG micro-beam. A size-dependent model related to FG effect and Poisson effect, which includes the formulations
of bending stiffness, deflection, normal stress and couple stress, is developed to predict the mechanical behaviors of the AFG micro-
beam by employing the principle of minimum potential energy. The mechanical behaviors of a simply supported AFG micro-beam
are numerically investigated using the developed model for demonstrating the size effects, FG effects and Poisson effects of the AFG
micro-beam. Results show that the mechanical behaviors of AFG micro-beams are distinctly size-dependent only when the ratio of
micro-beam height to material length-scale parameter is small enough. The FG parameter is an important factor that determines and
regulates the size-dependent behaviors of AFG micro-beams. The influences of Poisson’s ratio on the mechanical behaviors of AFG
micro-beams are not negligible, and should be also considered in the design and analysis of an AFG micro-beam. This work supplies

a theoretical basis and a technical reference for the design and analysis of AFG micro-beams in the related regions.
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1 Introduction

Functionally graded (FG) materials are a new group of
non-homogeneous materials and have some desirable
performances to satisfy special features in engineering
design B, By proper design, they can not only eliminate
the stress concentration, reduce the residual stress, but
also reduce crack driving force to improve the strength of
structural members. In the last decade, they are commonly
used in applications of construction, aerospace, energy
absorption or even in biomedical sectors .. Many
theoretical researches on the macroscopical characteristics
of FG materials have been carried out based on the classical
continuum mechanics 222,

With the rapid development of micro-technologies,
FG materials have been broadly applied in micro-electro-
mechanical system (MEMS) and nano-electro-mechanical
system (NEMS). Micro-scale experiments 3% have
revealed the size-dependent properties of micro-structures,
which is called size effect ™. The classical continuum
theory fails to express the size effects of microstructures.

Therefore, several higher-order continuum mechanics
theories, such as strain gradient theories, couple stress
theory and nonlocal elasticity theory, have been proposed
to capture the size effects in microstructures 2. In the
couple stress theory, the size effects of microstructures are
interpreted by two material length-scale parameters. The
modified couple stress theory (MCST), which contains
one material length-scale parameter, has been proposed
by Yang et al. (2002)? and widely used to investigate the
size-dependent bending, vibration, dynamic and buckling
behaviors of the microstructures made of homogeneous
materlals [2-4,12,17-18, 20]‘

In recent years, the mechanical behaviors of transverse
functionally graded (TFG) micro-beams/plates, whose
material properties vary along the thickness direction,
have been investigated on the basis of MCST. Asghari et
al. (2010)™ investigated the size effects of static bending
deflection and natural frequency of a TFG cantilever
micro-beam using the Bernoulli-Euler beam theory and
Hamilton’s principle. Reddy (2011)® developed nonlinear
Bernoulli-Euler and Timoshenko micro-beam theories,

Copyright © 2020 by author(s) and Viser Technology Pte. Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), permitting all non-commercial use, distribution, and reproduction

in any medium, provided the original work is properly cited.



which can consider the Poisson effect and the von Karman
geometric nonlinearity, to study the size effects and FG
effects of bending deflection, natural frequency and
buckling of a simply supported TFG micro-beam based on
the principle of virtual displacements. Ke et al. (2011,2012a,
2012b)P1 investigated the size effects and FG effects of
bending, free vibration and buckling characteristics of TFG
composite micro-beams/plates with different boundary
conditions using the Hamilton’s principle. Salamat-Talab
et al. (2012)% analyzed the size effects, FG effects and
Poisson effects of the deflection, rotation and natural
frequencies of a simply supported TFG micro-beam
utilizing a third-order shear deformation beam theory,
Hamilton’s principle and series method. Thai et al. (2015)
7 studied the size effects and FG effects of the normal
stress, transverse shear stress, deflection and frequency of
a simply supported TFG sandwich Timoshenko micro-
beam based on the Hamilton’s principle and Mori-Tanaka
scheme. And then, considering the Poisson effect, Trinh
et al. (2016)"? used a unified beam theory to explore the
influences of the material length-scale parameter, FG
parameter and slenderness ratio on the deflection, stresses,
natural frequencies and critical buckling loads of a simply
supported TFG micro-beam.

In addition to these TFG micro-beams/plates
aforementioned, axially functionally graded (AFG)
micro-beams, whose material properties vary along the
longitudinal direction, have also been investigated” 2>, For
instance, Ghayesh et al. (2017)"! examined the size effects
of the nonlinear bending and forced vibrations of an AFG
Bernoulli-Euler tapered micro-beam, and the influences of
FGparameterandtaperratioonthedeflectionand frequency
based on the MCST, Hamilton’s principle, Galerkin method
and Newton-Raphson technique. Li et al. (2017)1¢ studied
the size effects and FG effects of the bending, bucking and
free vibration of an AFG Bernoulli-Euler micro-beam
using the nonlocal strain gradient theory, the Hamilton’s
principle and generalized differential quadrature method.
Karamanli and Vo (2018)"® investigated the size-dependent
flexural behavior of a bi-directional FG micro-beam based
on the MCST and the principle of minimum potential
energy for several boundary conditions.

All of size effect, FG effect and Poisson effect play
important roles in governing the mechanical behaviors
of both TFG and AFG micro-beams. However few work
have been published to investigate all of size effects,
FG effects and Poisson effects of an AFG micro-beam
comprehensively. The objective of this paper is to develop
the mechanical model of an AFG micro-beam, which is
related to the size effects, FG effects and Poisson effects.
Firstly the displacement field of an AFG micro-beam is
set according to the Bernoulli-Euler beam theory, and the
components of strain, curvature, stress and couple stress
are expressed by the deflection of the AFG micro-beam
in Section 2. And then an AFG micro-beam model, which
includes the size-dependent formulations of bending
stiffness, deflection, stress and couple stress of the AFG
micro-beam, is established by employing the principle

of minimum potential energy in Section 3. Subsequently
the size effects, the FG effects and the Poisson effects of
the AFG micro-beam are respectively investigated in
Section 4, Section 5 and Section 6 based on the developed
model. Finally the important conclusions related to the
size-dependent behaviors of an AFG micro-beam are
summarized in section 7.

2 MCST descriptions of basic variables

According to the MCST, a generic matter point in
an elastomer has 6 degrees of freedom, including 3
displacement components expressed by the vector u, and 3
rotation components expressed by the vector 8, respectively.
The differential relationship between displacement vector
and rotation vector reads as

1
0 =—e.u, .
i ijk "k, j
2 )]

where e, is the permutation symbol. The geometric
equations of an elastomer read as

1
g, ==,  +u,,)
J 2 2] 7> (2a)

1
=0, +6,,)
l v 2 -] Js (2b)
where g, and x; denote the strain tensor and curvature
tensor, respectively. For the case of small deformation, we
write the constitutive equations of an isotropic elastomer as
o, =A£,0,+2Ge; (3a)

A2
m; =2I"Gy, (3b)

where o, is the stress tensor, m_ is the deviatoric part
of couple stress tensor, which is shortly called as the couple
stress tensor in this paper, 1 is called as the material length-
scale parameter, which is a material constant characterizing
the size effect, A and G represent Lame’s coeflicients
expressed as

- En

(1+p)(1-24) (4a)
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2(l+,u) (4b)

with E and p being the elastic modulus and Poisson’s
ratio, respectively.
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Figure 1 Simply supported AFG micro-beam subjected to
uniformly distributed load under a rectangular coordinate
system.

Figure 1 plots a simply supported AFG micro-
beam with rectangular constant section subjected to the
uniformly distributed load under a rectangular coordinate
system. The length, width and thickness are respectively
presented by L, b and h. Its elastic modulus is assumed to
vary along the axial direction according to



E(x)=E,+(E —E,)sin~
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where E and E stand for the values of elastic modulus

in the left end and the middle cross-section of the micro-

beam, respectively. According to the Bernoulli-Euler beam

theory, we can express the displacement field of the AFG
micro-beam as

u :—zd—w, v=0, w=w(x)
dr (6)

where u, v and w are the displacement components in
the x-, y- and z- directions, respectively. The displacement
component in z-direction, w, is often called as the deflection
of beam. Substituting the displacement field Eq. (6), into
the geometric equation Eq. (2a), we formulate the strain
components of the AFG micro-beam as

d*w
&, =—Z?, Ey =&, =0
€y TERTELT 0 (7)

Substituting the displacement field Eq. (6) into the
rotation components Eq. (1), we formulate the rotation

components of the AFG micro-beam as
0,=-2 9.-0 -0
B ®)
Plugging the rotation components Eq. (8) into the
geometric equation Eq. (2b), we formulate the curvature
components of the AFG micro-beam as
X=Xy =2==0,
2
Tdw o
2 dx (9)
Plugging the strain components Eq. (7) into the
constitutive equation Eq. (3a), we formulate the stress
components of the AFG micro-beam as

d’w
o= —[xl(x) + 2G(x)] z Rl

Ko =X =7

o
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where the coefficients \(x) and G(x) can be determined
by Egs. (5) and (4). Plugging the curvature components Eq.
(9) into the constitutive equation Eq. (3b), we formulate the
couple stress components of the AFG micro-beam as
m,=m,=m, =0,
d*w

m,=m, = -G(x)I? >

Xy

(11)
3 AFG micro-beam model

3.1 Bending stiffness formulation

According to the MCST, we can calculate the strain energy
of an elastomer by
1
U:EIV(G?SV +m,.j)(ij)dV (12)
where V is the volume the elastomer occupying.
Inserting the strain Eq. (7), curvature Eq. (9), stress Eq.
(10) and couple stress Eq. (11) into the strain energy Eq.

(12), we obtain

1 d*w
U=—| K *dx
[ K@) 03

where

K(¥)=a {EO +(E, - Eo)sinﬂ}l
L (14)
is the bending stiffness of the AFG micro-beam, where
_ 2
I= Lz d4 (15)

is the inertia moment of the cross-section of the

micro-beam, and
(w4

(1=2u)(1+p) 21+ I (16)

is called as the size effect parameter of the AFG micro-
beam because it is related to the material length-scale
parameter 1. For an AFG micro-beam with rectangular
cross-section, we express the size effect parameter as

o
(A+w)(A=2p) \h) (+up) (17)
In order to express the size effect of the bending
stiffness of the AFG micro-beam, we define a dimensionless
bending stiffness as
K(x)
K'(x)=—-*
E,1 (18)
Inserting Eq. (14) into Eq. (18), we formulate the
dimensionless bending stiffness of the AFG micro-beam as

K'(x)= a[l+(e—1)sinﬂ}
L (19)

where

i
|

(20)
is called as the FG parameter of the AFG micro-beam.

3.2 Deflection formulation

According to the displacement boundary conditions of the

AFG micro-beam in Figure 1, we assume the deflection
formulation as

() = €, sin(™5) + €, sin(CZY)

L L 1)

where C, and C, are the undetermined coefficients.

The total potential energy of the AFG micro-beam reads as

n=u+r (22)

where U is the strain energy formulated by Eq. (13),
and
V= —qu -w(x)dx

g (23)
is the loaded potential energy.

Plugging the strain energy Eq. (13), loaded potential
energy Eq. (23) and deflection formulation Eq. (21) into
the total potential energy Eq. (22), we express the total
potential energy of the AFG micro-beam in Figure 1 as

aEdxn’ ||z 2(e-1 12(e—-1 8lr 1458(e-1)| ,
(G, =5 {T S )}CE 4 )clcz+{7+%}q}

2 2L
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According to the principle of minimum total potential




energy, the actual displacement field minimizes the total
potential energy of an elastomer. Hence, the first order
variation of the total potential energy expressed by Eq. (24)

should be zero, i.e.

SI(C,, C2)=2—25C1+6—H5C2=0

| oC, (25)
Eq. (25) should be identical for arbitrary §C, and 6C,,
which asks for
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Substituting the expression of total potential energy
Eq. (24) into Egs. (26a) and (26b), we obtain an algebraic
equation set. Solving the obtained algebraic equation set,
we have

_ 2qL a,+3a,
" 32'Ela aa,-dl (27a)
gl _a;+3a,
P 3n'Eda aa,-dl 27b)
where
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Substituting Eq. (27) into the deflection formulation
Eq. (21), we obtain
4
2L | a,+3a, sin®X 4
3n'Ea

a,+3a, . 3rx
———=sin—

w(x) =

2 2
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In order to express the size effect of the deflection of
an AFG micro-beam, we define a dimensionless deflection
as
2qL'
32'E, 1

w'(x) =w(x)/( )
(30)
Substituting Eq. (29) into Eq. (30),we formulate the
dimensionless deflection of the AFG micro-beam in Figure

1as

w'(x)=

1| a+3a, . 7x.  a+3a, . 37nx
—| 2——=sin(=) + ——=%--sin(——)
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(31)
3.3 Normal stress formulation

Plugging the deflection formulation Eq. (29) into the stress
expression Eq. (10), we formulate the normal stress in a
generic matter point of the AFG micro-beam cross-section
as

2 "
o = 2qLz E'(x) [ a, +3a, sin X4 9a,+27a, -sin3”x

aa,—a; L J(32)

“ 32 a \aa,-d L
where
E'(x)= 1_7”[1 + (efl)sinﬂ}
I+ =2p) L (33)

In order to analyze the size effect of the normal stress
of an AFG micro-beam, we define a dimensionless normal

stress as
ZquzmaX
37’1 ) (34)
Substituting Eq. (32) into Eq. (34), we formulate the
dimensionless normal stress of the AFG micro-beam in
Figure 1 as
o', :E'(x).[az +3a32 -sin
a aa,—a, L

ol =0, /(
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3.4 Couple stress formulation

Plugging the deflection formulation Eq. (29) into the couple
stress expression Eq. (11), we formulate the couple stress in
a generic point of the AFG micro-beam cross-section as

_ 2qL°h* G'(x) 1)2 a,+3a; ; Q+9al +27a,

sin 3zx
Y372 a h |aa,-al L

aa,—a; L }(36)

where

G'(x) =

[1+(e—l)sin@}
2(1+ u) L (37)

In order to analyze the size effect of the couple stress
of the AFG micro-beam, we define a dimensionless couple
stress as
2qL°h*

37°1 ) (38)

Substituting Eq. (36) into Eq. (38), we formulate the
dimensionless couple stress of the AFG micro-beam as
m' = G'(x).(i)z. a, +3a32 “sin

’ a h a,a, —a; L

m'Xy =m, /(
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4, Size effects of AFG micro-beam

4.1 Size effect of bending stiffness

The size effect of bending stiffness of the AFG micro-beamin
Figure 1 are numerically investigated in this section. Figure
2 plots the bending stiffness curves related to size effect,
where the dimensionless bending stiffness is calculated by
Eq. (19) and maximum dimensionless bending stiffness is
specified by Eq. (19) with x = L/2, respectively.

Figure 2(a) plots the dimensionless bending stiffness
curves versus dimensionless coordinate with respect to
different values of dimensionless height. It is clear that each
dimensionless bending stiffness curve of the AFG micro-
beam forms a sinusoidal hump whose peak declines with
the increased value of dimensionless height. This indicates
the size effect of bending stiffness that the smaller the
value of dimensionless height is, the larger the value of
dimensionless bending stiffness of the AFG micro-beam is.

Figure 2(b) shows the maximum dimensionless
bending stiffness curves versus dimensionless height with
respect to different values of FG parameter. It is found that
the value of maximum dimensionless bending stiffness
rapidly decreases with the increased value of dimensionless
height when the dimensionless height is less than 4,
however it gradually becomes a stable constant when
the value of dimensionless height is greater than 10. This
explains the size effect of bending stiffness that it is obvious
when the value of dimensionless height is less than 4, while
it can be neglected when the value of dimensionless height



is greater than 10. It is seen that the curve of maximum
dimensionless bending stiffness moves upward and extends
vertically when the FG parameter becomes larger. This
explains the influence of FG parameter on the size effect of
bending stiffness that the larger the value of FG parameter
is, the more obvious the size effect of bending stiffness is.
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Figure 2 Bending stiffness curves related to the size effect:
(a) dimensionless bending stiffness vs. dimensionless co-
ordinate with different value of dimensionless height, and
(b) maximum dimensionless bending stiffness vs. dimen-

sionless height with different value of FG parameter.

4.2 Size effect of deflection

The size effect of deflection of the AFG micro-beam in
Figure 1 is numerically investigated in this section. Figure
3 plots the deflection curves related to the size effect, where
the dimensionless deflection is calculated by Eq. (31) and
maximum dimensionless deflection is specified by Eq. (31)
with x = L/2, respectively.

Figure 3 (a) plots the dimensionless deflection
curves versus dimensionless coordinate with respect to
different values of dimensionless height. It is clear that each
dimensionless deflection curve of the AFG micro-beam
forms a different sinusoidal hump whose peak rises with
the increased dimensionless height. This indicates the size
effect of deflection that the bending flexibility of an AFG
micro-beam rises with the increased value of dimensionless
height.

Figure 3 (b) shows the maximum dimensionless
deflection curves versus dimensionless height with respect
to different values of FG parameter. It is found that the value
of maximum dimensionless deflection obviously increases
with the increased value of dimensionless height when

the value of dimensionless height is less than 4, however
it gradually becomes a stable constant when the value of
dimensionless height is greater than 10. This illustrates
the size effect of deflection that it is obvious when the
value of dimensionless height is less than 4, however it
can be neglected when the value of dimensionless height
is greater than 10. It is clear that the curve of maximum
dimensionless deflection moves downward and shrinks
vertically when the FG parameter becomes larger. This
explains the influence of FG parameter on the size effect
of deflection that the smaller the value of FG parameter is,
the more obvious the size effect of deflection of an AFG
micro-beam is.
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Figure 3 Deflection curves related to the size effect: (a)
dimensionless deflection vs. dimensionless coordinate
with different value of dimensionless height, and (b) max-
imum dimensionless deflection vs. dimensionless height
with different value of FG parameter.

4.3 Size effect of normal stress

The size effect of normal stress of the AFG micro-beam in
Figure 1 is numerically investigated in this section. Figure
4 plots the normal stress curves related to the size effect,
where the dimensionless normal stress is calculated by Eq.
(35) with z = h/2 and maximum dimensionless normal
stress is specified by Eq. (35) with z = h/2 and x = L/2,
respectively.

Figure 4(a) shows the dimensionless normal stress
curves versus dimensionless coordinate with respect to
different values of dimensionless height. It is clear that
each dimensionless normal stress curve is with a platform



which is due to the FG effect of an AFG micro-beam. The
altitude of platform of dimensionless normal stress rises
with the increased value of dimensionless height, which
explains the size effect of normal stress that the larger the
value of dimensionless height is, the larger the value of
dimensionless normal stress is.

Figure 4(b) plots the maximum dimensionless normal
stress curves versus dimensionless height with respect to
different values of FG parameter. It is found that the value
of maximum dimensionless normal stress nonlinearly
increases with the increased value of dimensionless height
when the value of dimensionless height is below 10,
however it gradually becomes a stable constant when the
value of dimensionless height is above 20. This indicates
that the size effect of normal stress of an AFG micro-
beam is obvious when the value of dimensionless height
is below 10, however it can be neglected when the value
of dimensionless height is above 20. It is seen that the
influence of FG parameter on the size effect of normal
stress is not very obvious.
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Figure 4 Normal stress curves related to the size effect: (a)
dimensionless normal stress vs. dimensionless coordinate
with different value of dimensionless height, and (b) the
maximum dimensionless normal stress vs. dimensionless
height with different value of FG parameter.

4.4 Size effect of couple stress

The size effect of couple stress of the AFG micro-beam in
Figure 1 is numerically investigated in this section. Figure
5 plots the couple stress curves related to the size effect,
where the dimensionless couple stress is calculated by Eq.
(39) and maximum dimensionless couple stress is specified
by Eq. (39) with x = L/2, respectively.
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Figure 5 Couple stress curves related to the size effect: (a)
dimensionless couple stress vs. dimensionless coordinate
with different value of dimensionless height, and (b) maxi-

mum dimensionless couple stress vs. dimensionless height
with different value of FG parameter.

Figure 5(a) shows the dimensionless couple stress
curves versus dimensionless coordinate with different
values of dimensionless height. It is also clear that each
dimensionless couple stress curve is with a platform due
to the FG effect of an AFG micro-beam. But the altitude of
platform of dimensionless normal stress declines with the
increased value of dimensionless height, which indicates
the size effect of couple stress of an AFG micro-beam that
the smaller the value of dimensionless height is, the larger
the value of dimensionless couple stress is.

Figure 5(b) shows the maximum dimensionless
couple stress curves versus dimensionless height with
different values of FG parameter. It is seen that the value
of maximum dimensionless couple stress rapidly decreases
with the increased value of dimensionless height when
the value of dimensionless height is below 5, however
it gradually becomes a stable constant when the value of
dimensionless height is above 10. This indicates the size
effect of couple stress of an AFG micro-beam that it is
obvious when the value of dimensionless height is below 5,
while it can be neglected when the value of dimensionless
height is above 10. It is also seen that the influences of FG
parameter on the size effect of couple stress of an AFG
micro-beam is not obvious.

5 FG effects of AFG micro-beam

5.1 FG effect of bending stiffness
The FG effect of bending stiffness of the AFG micro-beam in



Figure 1 is numerically investigated in this section. Figure 6
shows the bending stiffness curves related to the FG effect,
where the dimensionless bending stiffness is calculated by
Eq. (19) and maximum dimensionless bending stiffness is
specified by Eq. (19) with x = L/2, respectively.
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Figure 6 Bending stiffness curves related to the FG effect:
(a) dimensionless bending stiffness vs. dimensionless
coordinate with different value of FG parameter, and (b)
dimensionless bending stiffness vs. FG parameter with
different value of dimensionless height.

Figure 6(a) plots the dimensionless bending stiffness
curves versus dimensionless coordinate with respect to
different values of FG parameter. It is clear that the peak
of dimensionless bending stiffness curve rises with the
increased value of FG parameter, which is due to the
expression of elastic modulus Eq. (5), and the definition
of FG parameter Eq. (20). This illustrates the FG effect of
bending stiffness of an AFG micro-beam that the bending
stiffness increases with the increased value of FG parameter.

Figure 6(b) plots the maximum dimensionless
bending stiffness curves versus FG parameter with respect
to different values of dimensionless height. It is clear that
the value of maximum dimensionless bending stiffness
increases with the increased value of FG parameter,
which also indicates FG effect of bending stiffness of an
AFG micro-beam. It is found that the curve of maximum
dimensionless bending stiffness extends vertically with the
decreased value of dimensionless height, which indicates
the influence of dimensionless height on the FG effect of
bending stiffness that the smaller the value of dimensionless
height is, the more obvious the FG effect of an AFG micro-
beam is.

5.2 FG effect of deflection

The FG effect of deflection of the AFG micro-beam in
Figure 1 is numerically investigated in this section. Figure 7
shows the deflection curves related to the FG effect, where
the dimensionless deflection is calculated by Eq. (31) and
maximum dimensionless deflection is specified by Eq. (31)
with x = L/2, respectively.
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Figure 7 Deflection curves related to the FG effect of
deflection: (a) dimensionless deflection vs. dimensionless
coordinate with different value of FG parameter, and (b)
maximum dimensionless deflection vs. FG parameter with
different value of dimensionless height.

Figure 7(a) shows the dimensionless deflection
curves versus dimensionless coordinate with respect to
different values of FG parameter. It is clear that the peak
of sinusoidal curve of dimensionless deflection decreases
with the increased value of FG parameter. This illustrates
the FG effect of deflection that the bending flexibility of an
AFG micro-beam decreases with the increased value of FG
parameter.

Figure 7(b) plots the maximum dimensionless
deflection curves versus FG parameter with respect to
different values of dimensionless height. It is found that
the value of maximum dimensionless deflection rapidly
decreases with the increased value of FG parameter when
the FG parameter is below 5, however it gradually becomes
a stable constant when the FG parameter is above 10. This
means that the FG effect of deflection of an AFG micro-
beam is obvious when the FG parameter is below 5, while
it can be neglected when the FG parameter is above 10.
It is clear that the maximum dimensionless deflection
curve moves upward and extends vertically when the
dimensionless height becomes larger. This explains the



influence of dimensionless height on the FG effect of
deflection of an AFG micro-beam that the larger the value of
dimensionless height is, the more obvious the FG effect is.

5.3 FG effect of normal stress

The FG effect of normal stress of the AFG micro-beam in
Figure 1 is numerically investigated in this section. Figure
8 plots the normal stress curves related to the FG effect,
where the dimensionless normal stress is calculated by Eq.
(35) with z = h/2 and maximum dimensionless normal
stress is specified by Eq. (35) with z = h/2 and x = L/2,
respectively.
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Figure 8 Normal stress curves related to the FG effect: (a)
dimensionless normal stress vs. dimensionless coordinate
with different value of FG parameter, and (b) maximum
dimensionless normal stress vs. FG parameter with differ-
ent value of dimensionless height.

Figure 8(a) shows the dimensionless normal stress
curves versus dimensionless coordinate with respect to
different values of FG parameter. It is found that the curve
peak of dimensionless normal stress decreases with the
increased value of FG parameter. However the curves of
dimensionless normal stress for different FG parameters
are very close and similar, which indicates that the FG effect
of normal stress of an AFG micro-beam is not obvious.

Figure 8(b) plots the maximum dimensionless normal
stress curves versus FG parameter with respect to different
values of dimensionless height. It is clear that the value
of maximum dimensionless normal stress has only slight
decrease with the increased value of FG parameter, which
also means that the FG effect of normal stress of an AFG
micro-beam is not obvious. It is seen that the maximum
dimensionless normal stress curve moves upward and
becomes more declining with the increased value of

dimensionless height. This explains that the larger the value
of dimensionless height is, the more obvious the FG effect
of normal stress of an AFG micro-beam is.

5.4 FG effect of couple stress

The FG effect of couple stress of the AFG micro-beam in
Figure 1 is numerically investigated in this section. Figure
9 plots the couple stress curves related to the FG effect,
where the dimensionless couple stress is calculated by Eq.
(39) and maximum dimensionless couple stress is specified
by Eq. (39) with x = L/2, respectively.
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Figure 9 Couple stress curves related to the FG effect: (a)
dimensionless couple stress vs. dimensionless coordinate
with different value of FG parameter, and (b) maximum
dimensionless couple stress vs. FG parameter with differ-
ent value of dimensionless height.

Figure 9(a) plots the dimensionless couple stress
curves versus dimensionless coordinate with respect to
the different values of FG parameter. It is found that the
curve peak of dimensionless couple stress decreases with
the increased value of FG parameter. However the curves
of dimensionless couple stress for the different values of FG
parameter are very close and similar, which indicates that
the FG effect of couple stress of an AFG micro-beam is also
not obvious.

Figure 9(b) shows the maximum dimensionless
couple stress curves versus FG parameter with respect
to different values of dimensionless height. It is found
that the value of maximum dimensionless couple stress
has only slight decrease with the increased value of FG
parameter, which also means that the FG effect of couple
stress of an AFG micro-beam is not obvious. It is clear that
the maximum dimensionless couple stress curve moves
upward and becomes more declining with the decreased



dimensionless height. This explains that the smaller the
value of dimensionless height is, the more obvious the FG
effect of couple stress of an AFG micro-beam is.

6 Poisson effects of AFG micro-beam

6.1 Poisson effect of bending stiffness

The Poisson effect of bending stiffness of the AFG micro-
beam in Figure 1 is numerically investigated in this section.
Figure 10 shows the bending stiffness curves related to the
Poisson effect, where the dimensionless bending stiffness
is calculated by Eq. (19) and maximum dimensionless
bending stiffness is specified by Eq. (19) with x = h/2,
respectively.
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Figure 10 Bending stiffness curves related to the Poisson
effect: (a) dimensionless bending stiffness vs. dimension-
less coordinate with different value of Poisson’s ratio, and
(b) maximum dimensionless bending stiffness vs. Pois-
son’s ratio with different value of FG parameter.

Figure 10(a) plots the dimensionless bending stiffness
curves versus dimensionless coordinate with respect
to different values of Poisson’s ratio. It is clear that each
dimensionless bending stiffness curve is with a sinusoidal
shape. The Poisson’s ratio has an obvious influence on the
curve of dimensionless bending stiffness of an AFG micro-
beam, which is the Poisson effect of bending stiffness.

Figure 10(b) shows the maximum dimensionless
bending stiffness curves versus Poisson’s ratio with respect
to different values of FG parameter. It is seen that the value
of maximum dimensionless bending stiffness slightly
decreases with the increased value of Poisson’s ratio when
the value of Poisson’s ration is below 0.4, however it rapidly
increases with the increased value of Poisson’s ratio when

the value of Poisson’s ration is above 0.4. This indicates
that the Poisson effect of bending stiffness is obvious when
the value of Poisson’s ration is above 0.4, while it can be
neglected when the value of Poisson’s ration is below 0.4. It
is seen that the maximum dimensionless bending stiffness
curve moves upward and extends vertically when the
value of FG parameter becomes larger. This explains the
influence of FG parameter on the Poisson effect of bending
stiffness that the larger the value of FG parameter is, the
more obvious the Poisson effect of bending stiffness of an
AFG micro-beam is.

6.2 Poisson effect of deflection

The Poisson effect of deflection of the AFG micro-beam in
Figure 1 is numerically investigated in this section. Figure
11 shows the deflection curves related to the Poisson effect,
where the dimensionless deflection is calculated by Eq. (31)
and maximum dimensionless deflection is specified by Eq.
(31) with x = L/2, respectively.
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Figure 11 Deflection curves related to the Poisson effect:
(a) dimensionless deflection vs. dimensionless coordinate
with different value of Poisson’s ratio, and (b) maximum
dimensionless deflection vs. Poisson’s ratio with different
value of FG parameter.

Figure 11(a) plots the dimensionless deflection curves
versus dimensionless coordinate with respect to different
values of Poisson’s ratio. It is found that each dimensionless
deflection curve is with a sinusoidal shape and the Poisson’s
ratio has an obvious influence on the curve of dimensionless
deflection, which is the Poisson effect of deflection of an
AFG micro-beam.

Figure 11(b) shows the maximum dimensionless
deflection curves versus Poisson’s ratio with respect to
different values of FG parameter. It is clear that the value



of maximum dimensionless deflection slightly increases
with the increased value of Poisson’s ratio when the value
of Poisson’s ratio is below 0.4, however it rapidly decreases
with the increased value of Poisson’s ratio when the value of
Poisson’s ratio is above 0.4. This indicates that the Poisson
effect of deflection of an AFG micro-beam is obvious when
the value of Poisson’s ratio is above 0.4, while it can be
neglected when the value of Poisson’s ratio is below 0.4. It
is seen that the maximum dimensionless deflection curve
moves downward and shrinks vertically with the increased
value of FG parameter. This explains the influence of FG
parameter on the Poisson effect of deflection that the
smaller the value of FG parameter is, the more obvious the
Poisson effect of deflection of an AFG micro-beam is.

6.3 Poisson effect of normal stress

The Poisson effect of normal stress of the AFG micro-beam
in Figure 1 is numerically investigated in this section. Figure
12 shows the normal stress curves related to the Poisson
effect, where the dimensionless normal stress is calculated
by Eq. (35) with z = h/2 and the maximum dimensionless
normal stress is specified by Eq. (35) with z=h/2 and x =
L/2, respectively.
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Figure 12 Normal stress curves related to the Poisson
effect: (a) dimensionless normal stress vs. dimensionless
coordinate with different value of Poisson’s ratio, and (b)
maximum dimensionless normal stress vs. Poisson’s ratio

with different value of FG parameter.

Figure 12(a) shows the dimensionless normal stress
curves versus dimensionless coordinate with respect to
different values of Poisson’s ratio. It is clear that a platform
appears in the dimensionless normal stress curve due to the
FG effect of an AFG micro-beam. The altitude of platform
of dimensionless normal stress increases with the increased

value of Poisson's ratio. This indicates the influence of
Poisson's ratio on the dimensionless normal stress, which is
the Poisson effect of normal stress of an AFG micro-beam.

Figure 12(b) shows the maximum dimensionless
normal stress curves versus Poisson’s ratio with respect to
different values of FG parameter. It is seen that the value
of maximum dimensionless normal stress nonlinearly
increases with the increased value of Poisson's ratio, which
means that the Poisson effect of normal stress of an AFG
micro-beam is obvious. It is found that the maximum
dimensionless normal stress curves with different values
of FG parameter are very close and similar, which means
that the influence of FG parameter on the Poisson effect of
normal stress of an AFG micro-beam is not obvious and
then can be neglected.

6.4 Poisson effect of couple stress

The Poisson effect of couple stress of the AFG micro-beam
in Figure 1 is numerically investigated in this section.
Figure 13 shows the couple stress curves related to the
Poisson effect, where the dimensionless couple stress is
calculated by Eq. (39) and maximum dimensionless couple
stress is specified by Eq. (39) with x = L/2, respectively.
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Figure 13 Couple stress curves related to the Poisson
effect: (a) dimensionless couple stress vs. dimensionless
coordinate with different value of Poisson’s ratio, and (b)
maximum dimensionless couple stress vs. Poisson’s ratio

with different value of FG parameter.

Figure 13(a) shows the dimensionless couple stress
curves versus dimensionless coordinate with respect to
different values of Poisson’s ratio. It is clear that a platform
also appears in the dimensionless couple stress curve due to
the FG effect of couple stress of an AFG micro-beam. The
altitude of platform decreases with the increased value of




Poisson's ratio. This explains the influence of Poisson's ratio
on the dimensionless couple stress, which is the Poisson
effect of couple stress of an AFG micro-beam.

Figure 13(b) plots the maximum dimensionless couple
stress curves versus Poisson’s ratio with respect to different
values of FG parameter. It is seen that the value of maximum
dimensionless couple stress nonlinearly decreases with the
increased value of Poisson's ratio, which indicates that the
Poisson effect of couple stress of an AFG micro-beam is
obvious. It is found that maximum dimensionless couple
stress curves for different values of FG parameter are very
close and similar, which indicates that the influence of FG
parameter on the Poisson effect of couple stress of an AFG
micro-beam is not obvious and then can be neglected.

7 Conclusions

The components of strain, curvature, stress and couple
stress of an AFG micro-beam are described according to
the MCST and Bernoulli-Euler theory. The size-dependent
model related to FG effect and Poisson effect is developed to
describe and predict the mechanical behaviors of the AFG
micro-beam by using the principle of minimum potential
energy. The mechanical behaviors of the AFG micro-beam,
which are related to size the effects, FG effects and Poisson
effects, are numerically investigated via the dimensionless
definitions such as dimensionless bending stiffness,
dimensionless deflection, dimensionless normal stress
and dimensionless couple stress. Through the numerical
simulation, some important conclusions are summarized
as follows.

1) The size effects of mechanical behaviors, which
includes the size effects of bending stiffness, deflection,
normal stress and couple stress of the AFG micro-beam,
are obvious when the value of dimensionless height is small
enough. However the size effects can be neglected when
the value of dimensionless height of micro-beam is large
enough.

2) The FG effects, i.e. the influences of FG parameter,
are important factors related to the bending stiffness and
deflection of AFG micro-beam. However the FG effects
of normal stress and couple stress are not very obvious.
The dimensionless height has visible influences on the FG
effects of bending stiffness, deflection, normal stress and
couple stress of the AFG micro-beam.

3) The Poisson effects, i.e. the influences of Poisson’s
ratio, are not negligent for the bending stiffness, deflection,
normal stress and couple stress of the AFG micro-beam.
The dimensionless height has obvious influences only on
the Poisson effects of bending stiffness and deflection,
while it has little influences on the Poisson effects of normal
stress and couple stress.

Author Contributions: Bo ZHOU first proposed a method
to analyze the size effect, functionally graded (FG) effect
and Poisson effect of an axially functionally graded (AFG)
micro-beam by using Bernoulli-Euler beam theory and
modified coupled stress theory and combining with the
principle of minimum potential energy. Shuai WANG

established a size-dependent model related to FG effect
and Poisson effect, including the calculation formulas of
bending stiffness, deflection, normal stress and couple
stress, and numerically investigated the size effect, FG effect
and Poisson effect of simply supported AFG micro-beam of
the established model. Zetian KANG and Shichen ZHOU
determined the displacement field of AFG micro-beam
based on Bernoulli-Euler beam theory. And expressed the
components of strain, curvature, stress and couple stress
according to the modified coupling stress theory. Using
the principle of minimum potential energy. Shifeng XUE
put forward some guiding opinions on the logicality and
innovation of the article.

Conflict of Interest: We are committed to that there is no
conflict of interest regarding the publication of this paper.

Acknowledgments:  The authors of this paper
acknowledge the supports from the National Key
Research and Development Program of China (Grant No.
2017YFC0307604) and the Talent Foundation of China
University of Petroleum (Grant No. Y1215042).

This is the Appendix: This article does not cover the details
that require an appendix.

References

[1] Asghari M, Ahmadian M T, Kahrobaiyan M H, Rahaeifard
M, 2010. On the size-dependent behavior of functionally
graded micro-beams. Materials & Design. 31(5), 2324-
2329. https://doi.org/10.1016/j.matdes.2009.12.006

[2] Dai H L, Wang Y K, Wang L, 2015. Nonlinear dynamics
of cantilevered microbeams based on modified couple
stress theory. International Journal of Engineering
Science. 94, 103-112. https://doi.org/10.1016/].
ijengsci.2015.05.007

[3] Dehrouyeh-Semnani A M, Nikkhah-Bahrami M, 2015a.
The influence of size-dependent shear deformation on
mechanical
beam based on modified couple stress theory. Composite
Structures. 123, 325-336. https://doi.org/10.1016/].
compstruct.2014.12.038

[4] Dehrouyeh-Semnani A M, Nikkhah-Bahrami M, 2015b.
A discussion on incorporating the poisson effect in
microbeam models based on modified couple stress
theory. International Journal of Engineering Science. 86,
20-25. https://doi.org/10.1016/j.ijengsci.2014.10.003

[5] Ghayesh M H, Farokhi H, Gholipour A, Tavallaeinejad M,
2017. Nonlinear bending and forced vibrations of axially
functionally graded tapered microbeams. International
Journal of Engineering Science. 120, 51-62. https://doi.
org/10.1016/j.ijengsci.2017.03.010

[6] Heydari A, Jalali A, Nemati A, 2017. Buckling analysis of
circular functionally graded plate under uniform radial
compression including shear deformation with linear

behavior of microstructures-dependent



and quadratic thickness variation on the Pasternak
elastic foundation. Applied Mathematical Modelling. 41,
494-507. https://doi.org/10.1016/j.apm.2016.09.012

[71 Huang, Li X F, 2010. A new approach for free vibration
of axially functionally graded beams with non-uniform
cross-section. Journal of Sound and Vibration. 329(11),
2291-2303. https://doi.org/10.1016/j.jsv.2009.12.029

[8] Karamanh A, Vo T P, 2018. Size dependent bending
analysis of two directional functionally graded
microbeams via a quasi-3D theory and finite element
method. Composites Part B: Engineering. 144, 171-183.
https://doi.org/10.1016/j.compositesb.2018.02.030

[9] Ke L L, Wang Y S, 2011. Size effect on dynamic stability
of functionally graded micro-beams based on a modified
couple stress theory. Composite Structure. 93(2), 342-
350. https://doi.org/10.1016/j.compstruct.2010.09.008

[10]Ke L L, Wang Y S, Yang J, Kitipornchai S, 2012a. Free
vibration of size-dependent Mindlin microplates based
on the modified couple stress theory. Journal of Sound
and Vibration. 331(1), 94-106. https://doi.org/10.1016/].
jsv.2011.08.020

[11]1Ke L L, Yang J, Kitipornchai S, Bradford M A, 2012b.
Bending, buckling and vibration of size-dependent
functionally graded annular microplates. Composite
Structures.94(11),3250-3257. https://doi.org/10.1016/].
compstruct.2012.04.037

[12]Kong S L, Zhou S J, Nie Z F, Wang K, 2008. The size-
dependent frequency of Bernoulli-Euler
micro-beams. International Journal of Engineering
Science. 46(5), 427-437. https://doi.org/10.1016/j.
ijengsci.2007.10.002

[13] Kouzeli M, Mortensen A, 2002. Size dependent
strengthening in particle reinforced aluminium. Acta
Materialia. 50(1), 39-51. https://doi.org/10.1016/5S1359-
6454(01)00327-5

[14] Lama D CC, Yang F, Chonga A C M, Wang J, Tong P, 2003.
Experiments and theory in strain gradient elasticity.
Journal of the Mechanics and Physics of Solids. 51, 1477-
1508. https://doi.org/10.1016/50022-5096(03)00053-X

[15]Li X B, Li L, Hu Y J, Ding Z, Deng W M, 2017. Bending,
buckling and vibration of axially functionally graded
beams based on nonlocal strain gradient theory.
Composite Structures. 165, 250-265. https://doi.
org/10.1016/j.compstruct.2017.01.032

[16] Liu Z, Meyers M A, Zhang Z, Ritchie R O, 2017. Functional
gradients and heterogeneities in biological materials:
Design principles, functions, and bioinspired applications.
Progress in Materials Science. 88, 467-498. https://doi.
org/10.1016/j.pmatsci.2017.04.013

[177Ma H M, Gao X L, Reddy J N, 2008. A microstructure-
dependent Timoshenko beam model based on a modified
couple stress theory. Journal of the Mechanics & Physics
of Solids. 56(12): 3379-3391. https://doi.org/10.1016/].

natural

jmps.2008.09.007

[18] Mohammadabadi M, Daneshmehr AR, Homayounfard M,
2015. Size-dependent thermal buckling analysis of micro
composite laminated beams using modified couple stress
theory. International Journal of Engineering Science. 92,
47-62. https://doi.org/10.1016/].ijengsci.2015.03.005

[19] Naebe M, Shirvanimoghaddam K, 2016. Functionally
graded materials: A review of fabrication and properties.
Applied Materials Today. 5, 223-245. https://doi.
org/10.1016/j.apmt.2016.10.001

[20]Park S K, Gao X L, 2006. Bernoulli-Euler
model based on a modified couple stress theory.
Journal of Micromechanics & Microengineering.
16(11), 2355-2359. http://iopscience.iop.org/
article/10.1088/0960-1317/16/11/015/meta

[21] Pradhan K K, Chakraverty S, 2013. Free vibration of
Euler and Timoshenko functionally graded beams
by Rayleigh-Ritz method. Composites Part B:
Engineering. 51(4), 175-184. https://doi.org/10.1016/j.
compositesb.2013.02.027

[22]Reddy J N, 2000. Analysis of functionally graded
plates. International Journal for Numerical Methods in
Engineering. 47(1-3), 663-684. https://doi.org/10.1002/
(SIC1)1097-0207(20000110/30)47:1/3<663::AID-
NME787>3.0.CO;2-8

[23]Reddy J N, 2011. Microstructure-dependent couple
stress theories of functionally graded beams. Journal of
the Mechanics & Physics of Solids. 59(11), 2382-2399.
https://doi.org/10.1016/j.jmps.2011.06.008

[24] Salamat-Talab M, Nateghi A, Torabi J, 2012. Static and
dynamic analysis of third-order shear deformation FG
micro beam based on modified couple stress theory.
International Journal of Mechanical Sciences. 57(1), 63-
73. https://doi.org/10.1016/j.ijmecsci.2012.02.004

[25] Shahba A, Attarnejad R, Marvi M T, Hajilar S, 2011. Free
vibration and stability analysis of axially functionally
graded tapered Timoshenko beams with classical and
non-classical boundary conditions. Composites Part B:
Engineering. 42(4), 801-808. https://doi.org/10.1016/j.
compositesb.2011.01.017

[26]Sola A, Bellucci D, Cannillo V, 2016. Functionally
graded materials for orthopedic applications - an
update on design and manufacturing. Biotechnology
Advances. 34(5), 504-531. https://doi.org/10.1016/j.
biotechadv.2015.12.013

[27]Thai HT, Vo T P, Nguyen T K, Lee J, 2015. Size-dependent
behavior of functionally graded sandwich microbeams
based on the modified couple stress theory. Composite
Structures. 123, 337-349. https://doi.org/10.1016/].
compstruct.2014.11.065

[28] Thai HT, Vo T P, Nguyen T K, Kim S E, 2017. A review of
continuum mechanics models for size-dependent analysis
of beams and plates. Composite Structures. 177, 196—

beam



219. https://doi.org/10.1016/j.compstruct.2017.06.040

[29] Trinh L C, Nguyen H X, Vo T P, Nguyen T K, 2016.
Size-dependent behaviour of functionally graded

microbeams using various shear deformation theories
based on the modified couple stress theory. Composite
Structures. 154, 556-572. https://doi.org/10.1016/].
compstruct.2016.07.033

[30]Wu L, Wang Q S, Elishakoff I, 2005. Semi-inverse
method for axially functionally graded beams with
an anti-symmetric vibration mode. Journal of Sound
and Vibration. 284(3-5), 1190-1202. https://doi.
org/10.1016/j.jsv.2004.08.038

[31] Xu F, Zhang X, Zhang H, 2018. A review on functionally

graded structures and materials for energy absorption.

Engineering Structures. 171, 309-325. https://doi.
org/10.1016/j.engstruct.2018.05.094

[32] Yang F,Chong ACM, Lam D CC, Tong P, 2002. Couple stress
based strain gradient theory for elasticity. International
Journal of Solids and Structures. 39(10), 2731-2743.
https://doi.org/10.1016/5S0020-7683(02)00152-X

[33]Zdenék P, Bazant, 1984. Size effect in blunt fracture:
concrete, rock, metal. Journal of Engineering Mechanics.

110 (4), 518-535. https://doi.org/10.1061/(ASCE)0733-
9399(1984)110:4(518)

[34] Zhao L, Chen W Q, Li C F, 2012. Symplectic elasticity for
bi-directional functionally graded materials. Mechanics

of Materials. 54, 32-42. https://doi.org/10.1016/j.
mechmat.2012.06.001



