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Abstract: 

In uncertainty-based multidisciplinary design optimization (UBMDO), all reliability limitation factors are maintained due to minimize 

the cost target function. There are many reliability evaluation methods for reliability limitation factors. The second-order reliability 

method (SORM) is a powerful most possible point (MPP)-based method. It can provide an accurate estimation of the failure 

probability of a highly nonlinear limit state function despite its large curvature. But the Hessian calculation is necessary in SORM, 

which results in a heavy computational cost. Recently, an efficient approximated second-order reliability method (ASORM) is 

proposed. The ASORM uses a quasi-Newton method to close to Hessian without the direct calculation of Hessian. To further improve 

the UBMDO efficiency, we also introduce the performance measure approach (PMA) and the sequential optimization and reliability 

assessment (SORA) strategy. To solve the optimization design problem of a turbine blade, the formula of MDO with ASORM under 

the SORA framework (MDO-ASORM-SORA) is proposed. 
Keywords: uncertainty; reliability analysis; optimization design; turbine blade 

 

Introduction 

The Multidisciplinary design optimization (MDO) 

is a methodology for the design problems of complicated 

and coupled engineering systems, which has received 

extensive attention from industry and academia 
[1-11]

. The 

application of MDO research results has expanded from 

the initial hypersonic aircraft, large passenger aircraft, 

shuttle spacecraft, and other aerospace fields to vehicles 

and ships, electronics, energy, and civil and construction 

and other engineering fields have produced significant 

technical and economic benefits [12-16]. To effectively 

consider the influence of these uncertain factors in the 

process of design optimization, uncertainty-based 

multidisciplinary design optimization (UBMDO) has 

become one of the research hot spots of modern 

engineering system design 
[17-26]

. So far, the UBMDO 

method that considers random uncertainty has become 

more mature after combining reliability analysis methods 

such as classical probability theory. Due to the adoption 

of the sequence optimization and reliability evaluation 

sequential optimization and reliability assessment 

(SORA) strategy, the reliability analysis process and the 

design optimization process are decoupled 
[27-29]

. The 

entire  

UBMDO process is decomposed into a series of 

alternate deterministic MDO and reliability analysis 

processes, and the computational efficiency is further 

improved 
[30-31]

. 

However, the Hessian calculation is necessary in 

second-order reliability method (SORM), which results 

in a heavy computational cost. To further improve the 

efficiency and robustness of UBMDO, based on 

UBMDO, the approximated second-order reliability 

method (ASORM) method based on performance 

measure approach (PMA) under SORA strategy is 

proposed. 

1 Traditional reliability calculation method 

1.1 First order reliability method (FORM) 

For the limit state equation ( ) 0G x  , x is 
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represented as a vector form of a random variable in the 

original space, which is transformed into an independent 

standard normal space (U space), and the limit state 

equation will be rewritten as ( ) 0g u  . According to the 

physical meaning of the reliability index, the problem of 

calculating the reliability index is transformed into the 

problem of solving the minimum distance from the 

origin of the coordinate to the limit state surface in U 

space. The specific constrained optimization problem is 

as follows: 

When ( ) 0g u  , compute the 
* minnu u , So the 

first-order reliability index FORM  and the instability 

probability FORM

fP  are computed by Eq. (1): 

 

FORM *

FORM FORM

f

u

P


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

  
           

(1) 

where   is the modulus of the vector,   is the 

standard normal distribution function. 

1.2 The review of SORM 

The SORM method uses Taylor series to expand the 

function ( )g u  at point *u , and keeps the quadratic term. 

The second-order approximate expression of ( )g u  can 

be obtained as follow: 

   FORM * *1
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 is the 

n-dimensional Hessian matrix, n is the number of 

random variables, ( )g u  is the gradient vector of the 

verification point *u , which can use the front difference 

method to calculate: 
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i i
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where h  is the step size, i is the i th component of 

the vector. 

On the basis of the obtained verification point 
*u  and 

the Hessian matrix H, the random variable is transferred 

from U space to V space to ensure that the n th axis of V 

space coincides with the verification point vector
*u , which 

can be solved by the Gram-Schmidt method. The matrix 

form is V=PU. Operate the rotation matrices P and H, select 

the first n-1 order to form a sub-matrix, and perform 

diagonal processing on the sub-matrix to obtain the n-1 

order diagonal matrix 
rotH  as follows: 

 *

T

rot

H
H P P

g u



           

(4) 

The diagonal element of the matrix 
rotH  is the 

principal curvature i , which is 

  ( 1,2, , 1)i rot ii
H i n   L . Geometrically, i  

represents the principal curvature at the check point. 

After obtaining the check point and principal curvature, 

different algorithms can be used to calculate the 

second-order reliability. 

2 The approximated second-order reliability 

method  

In UBMDO, the evaluation of the reliability 

constraints can be defined using a multidimensional 

integral. However, when the limit state functions are 

nonlinear, the multidimensional integral cannot be 

calculated analytically. Therefore, we approximate the 

limit state function by the Taylor series of second-order 

at the MPP in U-space. 

To eliminate the mistake caused by quadratic 

function parabolic approximation and obtain a better 

accuracy, this study uses the SORM with the generalized 

chi-square distribution. 

In practical engineering problems, the calculation of 

Hessian analysis cannot be performed. To solve previous 

problem, utilizing the quasi-Newton approach to approximate 

the Hessian. This paper also introduces the ASORM. 

When being close to the N×N Hessian matrix, 

taking a symmetric matrix, there are N(N+1)/2 degrees 

of freedom, while the secant line term exerts only N 

constraints. the unique Hessian updates required 

additional constraints. The symmetric rank-one (SR1) 

updates and creates the unique symmetric matrix with a 

rank-one amendment meeting the secant qualification. 

Finding a FORM calculation method with good 

convergence is the basis for calculating SORM indicators. 

In this paper, the HLRF-BFGS algorithm 
[32]

 is used to 

determine the check point to obtain the first-order 

reliability index; then the SR1 algorithm is used to 

approximate the Hessian matrix to obtain the 

second-order reliability index with excellent accuracy. 

Based on the FORM calculation process of the 

HLRF-BFGS algorithm, the search calculation direction 

kd  can be obtained by the Eq. (5): 
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where k is the number of iterations; BFGSB is the inverse 

matrix of the Hessian matrix calculated by the BFGS 

algorithm, that is  
1

BFGS BFGS


B H , which can be obtained 

by the recursive Eq. (6). kq  is expressed as Eq. (7): 

   1k k k k kq d g u g u             
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where 
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On this basis, the check point in the new iteration 

can be obtained by the Eq. (8): 

1k k ku u d 
               

(8) 

Repeat the above iteration process, the iteration 

stops when the following conditions are met: 

 
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At the same time, the SR1 algorithm can provide a 

more accurate approximation of the Hessian matrix than 

other methods. Therefore, SR1 algorithm is used to 

approximate the Hessian matrix in each iteration in this 

study. Its expression is as follow: 
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where    1 k k ky g u g u . 

Compared with SORM, ASORM adopts the 

approximated Hessian rather than direct calculation of 

Hessian. Thereby it requires computations only used in 

FORM to realize much efficient and precise reliability 

analysis. Compared with FORM, in the most possible 

point (MPP) search, ASORM makes full use of the 

information collected, Thus the reliability assessment can 

be more accurate. 

3 Review of PMA and SORA 

3.1 The PMA 

In UBMDO, adopting PMA is more effective than 

direct evaluation of actual probability. If some non-active 

reliability restrictions are directly evaluated to get their 

real probabilities, they will govern the entire calculation 

process, leading to low computational efficiency.  

The basic formula of UBMDO is to minimize the 

objective function under the restriction of probability, 

which can be expressed as Eq. (10). 
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where the  f  indicates the objective function of 

UBMDO problem. di represents the local design 

variables for the i th discipline. ds are shared design 

variables in all disciplines. xi express the local input 

variables for discipline i, xs denotes the vector of sharing 

variables which are input variables of every discipline. 
  Pr 0  
i

tg  are probability restrictions to discipline i. 

 Pr 0g  refers to the probability of fail with the pattern 

of 0g . J1 and J2 are the flabby limitation 

requirements of subsystem 1 and subsystem 2, severally. 

ε represents an extremely small positive number that can 

be dynamically changeable. gi and Ri signify the 

probability limitation requirements and allowed 

reliability separately.  
To every probability restriction, the PMA-based 

UBMDO can be depicted as Eq. (11). 

 
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where ( )i

su  and ( )i

iu  are the standard normal 

stochastic variables for U-space, they separately 

denote stochastic variables of 
sx  and 

ix  of 

discipline i in X-space. t
 is the required reliability. 

( )iu  consists of all standard normal stochastic 

variables in all disciplines. 

3.2 The SORA strategy 

In UBMDO, The SORA adopts series of cycles for 

reliability analysis and decoupled deterministic MDO. In 

every cycle, reliability analysis and MDO are mutually 

decoupled. Reliability analysis is performed after MDO, 

and the process of SORA is demonstrated. The ASORM 

is used to work out the reliability estimation problems in 

a cycle in this study. Use PMA to construct a new 

deterministic MDO problem for the next cycle within the 

framework of SORA. 

4 The turbine blade design optimization 

In this paper, the UBMDO which only considers 

interval variables is improved, and both interval 

variables and random variables are considered in the 
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optimization design process. Then, taking the optimal 

design of the planetary gearbox for a megawatt wind 

turbine as the research object, the uncertainty factors in 

the optimal design of the wind turbine planetary gearbox 

are analyzed. On this basis, the proposed method is used 

to optimize the design of the planetary gearbox. The final 

comparative analysis shows the result of planetary 

gearbox optimization, and the optimization design 

scheme of this paper is feasible. 

Turbine blades are important components which 

make up the turbine section of a gas turbine 
[33-34]

. The 

blades extract energy from the high temperature, high 

pressure gas produced by the combustor, thus the turbine 

blade design optimization is a typical MDO problem 

including heat transfer, aerodynamics and structure. In 

this study, a turbine blade design optimization problem is 

solved using the proposed UBMDO method. The 

objective is maximizing the aerodynamic efficiency η. 

There are nine design variables and three constraints, 

which are shown in Figure 1 and Tab. 1. 

Here, we assume that all design variables are 

random variables which are normally distributed. We use 

FORM, SORM and ASORM to solve this MDO problem, 

respectively. In Tab. 2, we can see that all reliability 

estimation methods can obtain reasonable solutions. The 

UBMDO methods using ASORM and using FORM 

require almost the same computation time t. However, 

the aerodynamic efficiency from UBMDO using 

ASORM are more conservative than that from UBMDO 

using FORM. Compared with the aerodynamic 

efficiency η=0.9428 from UBMDO using SORM, the 

aerodynamic efficiency from UBMDO using ASORM is 

0.9468. It means that two UBMDO methods can enjoy 

higher accurate reliability estimations. 

Table 1  Design variables and constraints of turbine 

blade design optimization 

 Description Initial value 
Lower 

bound 

Upper 

bound 

Design 

variables 

Top 

section 

1r /
2r /

3r  

Installation 

angle 

41.0/61.0/74.

0 

38.0/58.0/71.

0 

44.0/64.0

/77.0 

Middle 

section 

1φ /
2φ /

3φ  

Incidence 

angle 
10.0/2.0/-6.0 7.0/0.5/-9.0 

13.0/5.0/-

3.0 

Root 

section 

1ξ /
2ξ /

3ξ  

Deviation 

angle 
6.0/4.0/2.0 3.0/1.0/0.5 

9.0/7.0/5.

0 

Constraint

s 

Maximum temperature/K 983.22 - 1000 

Equivalent stress/MPa 603.09 - 120 

Maximum deformation/mm 0.5012 - 0.6 

Table 2  Design variables and constraints of turbine 

blade design optimization 

 1r  1φ  1ξ  2r  2φ  2ξ  3r  3φ  3ξ  η t 

ASOR

M 
38.17 11.09 6.56 57.08 4.66 6.15 71.97 

-4.9

7 
1.06 0.9468 

72hr/ 

43min 

SORM 38.42 11.23 6.37 56.35 4.71 6.44 71.35 
-4.5

8 
1.10 0.9428 

129hr/

39min 

FORM 36.34 10.34 6.53 55.30 4.89 6.92 73.01 
-4.5

5 
1.28 0.9613 

69hr/ 

39min 

 

Figure 1  The structure sketch of a turbine blade 

5 Conclusion 

In UBMDO, the computational cost of the 

objective function is minimized while preserving all 

reliability constraints. There are many methods of 

reliability assessment. SORM is an MPP-based method. 

It can accurately estimate the failure probability of 

highly nonlinear limit state functions. However, 

Hessian calculation is required in SORM, and the 

calculation cost is very high. Recently, an efficient 

ASORM has been proposed. ASORM uses the 

quasi-Newton method to approximate the Hessian 

without directly computing the Hessian. To further 

improve UBMDO efficiency, we also introduce PMA 

and SORA strategies. To solve the optimal design 

problem of turbine blades, MDO-ASORM-SORA is 

proposed. It is demonstrated that the proposed method 

has more accurate reliability estimates. 
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