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Abstract: 

In the engineering, to ensure the quality and safety, it is necessary to carry out reliability analysis on it. When conducting reliability 

analysis in engineering, a large number of small failure probability problems will be encountered. For such problems, the traditional 

Monte Carlo method needs a lot of samples, and the calculation efficiency is extremely low, while the subset simulation method can 

efficiently estimate the reliability index of the small failure probability problem with little samples. Therefore, this paper takes the 

application of the subset simulation method in the reliability analysis of the small failure probability structure as the object, constructs 

the reliability analysis method of the single failure mode of the system, and applies the method to a mathematical example and a 

single-story gate. Through the rigid frame example, it can be seen that this method is beneficial to improve the calculation efficiency 

and accuracy. 
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1 Introduction 

Reliability engineering 
[1]

 is a comprehensive 

engineering discipline that includes various engineering 

technologies, including statistics and analysis of product 

failures and their probability of occurrence, reliability 

design 
[2-3]

, reliability prediction 
[4-6]

, reliability test 
[7]

, 

reliability evaluation 
[8-9]

, reliability inspection 
[10-11]

, 

reliability control 
[12]

, reliability maintenance 
[13-14]

 and 

failure analysis 
[15-17]

. Its essence is to fight against failure 

or malfunction, throughout the whole life cycle of the 

product. For a product, the high reliability of the system is 

particularly important. In the engineering system, because 

all parts work with each other, if some parts fail, it will 

usually cause serious accidents 
[18-21]

. Therefore, when 

designing such a system, it needs to have a low failure 

probability to guarantee that the engineering system has 

higher safety. For example, in the field of aviation and 

aerospace, the British Aviation Commission stipulates that 

the failure rate of aircraft must be lower than 10-5 
[22-23]

. In 

the field of automobile industry, there is a key index in 

the process of automobile design, that is, the safety of 

automobile structure. According to the design standard of 

automobile fatigue reliability, the failure probability of 

key structure of car body should be less than 0.01% 
[24-25]

. 

Therefore, to achieve high-precision evaluation, it is 

necessary to study the analysis method of Small Failure 

Probability (SFP) problem 
[26-27]

. 

SFP means that the probability of part failure is very 

small. So it is almost impossible to occur in one test.  

However, it will inevitably occur in repeated tests. 

The reliability analysis method of SFP problem is mainly 

sampling method 
[28-29]

. The Monte Carlo Simulation 

(MCS) method has strong versatility, the calculation 

accuracy increases with the increase of the sampling point 

capacity. Reliability analysis results with the required 

accuracy can be obtained theoretically. However, when 

the dimension of the random variable is too large, the vast 

majority of the sample points extracted by the MCS 

method will fall into the safety domain of the design 

space, which makes little contribution to the reliability 

analysis of failure events. In addition, the computational 

cost of obtaining sample points for high-dimensional and 

highly nonlinear systems is high, which leads to the low 

efficiency of the MCS method. If the utilization rate of 

sample points can be improved, especially in the analysis 

of multi-disciplinary complex systems, the calculation 

cost will be greatly reduced. For SFP problems in large 

and complex engineering systems, the subset simulation 

method (SS) can maintain considerable accuracy and 

efficiency in calculations 
[30-32]

. SS is an efficient and 

accurate method for calculating SFP. Its core is to use 

adaptive method to decompose the whole large 

probability space into a series of nested subspaces. These 
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subspaces are regarded as intermediate failure events, 

which correspond to a series of conditional failure 

probabilities. According to Bayesian formula 
[33-35]

, these 

conditional failure probabilities are multiplied in turn, 

then the tiny failure probability of the required solution is 

obtained. This method improves the efficiency and 

accuracy of the SFP problem 
[36-38]

.  

Abdollahi and Moghaddam et al 
[39]

. introduced the 

Subset Control Variable (SCV) technology, which is a 

new method to reformulate the traditional SS and 

provides statistical features. Au and Beck 
[40]

 expressed 

the failure probability as the product of the larger 

conditional failure probability, and proposed a new 

simulation method SS to calculate the SFP encountered in 

the reliability analysis of engineering systems. Xiao and 

Zhang et al. 
[41]

 proposed an effective Kriging-based Subset 

Simulation (KSS) method for mixed reliability analysis 

under random and interval variables using SFP. Qian and 

Li et al. 
[42]

 proposed a time-varying system reliability 

analysis method, combining multi-response Gaussian 

process (MRGP) and SS to solve the SFP issues. 

The structure of this article can be summarized as 

follows: The second section reviews the Markov chain 

Monte Carlo method (MCMC). The third section 

introduces the principle and calculation process of the SS. 

In the fourth section, two examples are used to verify the 

advantages of the SS in solving the SFP. Finally, the 

content of the full text is summarized in the fifth section. 

2 Review of Markov Chain Monte Carlo 

MCS 
[43]

 is a calculation method based on random 

numbers. Assuming that the domain of the random 

variable x  is X , and its probability density function 

(PDF) is f(x). the objective of MCS is to solve the 

mathematical expectation Ef(x),g(x)- . g(x)  is the 

function defined on X. MCS independently samples n 

samples x1, x2, ⋯ ⋯ xn  according to g(x) , the 

approximate expectation is: 

Ef(x),g(x)- ≈
1

n
∑ g(xi)

n
i=0           (1) 

Assuming that the integral of solution z(x) on X is 

required: 

∫ z(x)dx
X

                   (2) 

It is necessary to decompose z(x) into the g(x) 

and f(x), and then transform the problem into solving 

the mathematical expectation Ef(x),g(x)- of the g(x) 

about f(x): 

∫ z(x)dx
X

= ∫
z(x)

f(x)
f(x)dx

X

= ∫ g(x)f(x)
X

=Ef(x),g(x)-  (3) 

Then 

∫ z(x)dx
X

= Ef(x),g(x)- ≈
1

n
∑ g(xi)

n
i=0      (4) 

In many cases, the performance function z(x) of 

the system structure is complex and can’t be directly used 

to calculate the failure probability, and the 

above-mentioned MCS can better solve this problem. 

However, sometimes the decomposed PDF g(x)  is 

equally complex, and MCS is no longer applicable. 

MCMC 
[44]

 can efficiently generate a series of 

samples that obey the complex distribution f(x). Suppose 

the state space of Markov chain (MC) (X = X0,
X1, … , Xt, … ) is S. Moreover, the transition probability 

matrix is P = (Pij), where Pij denotes the probability that 

the jth state will be transferred to the ith state. If there is a 

distribution π=(π1, π2,…)T on the state space S, such that 

π=Pπ, then the stationary distribution of MC is π.  

If an original distribution is the stationary 

distribution of the MC, after any transfer operation, its 

result is still the stationary distribution. If the MC is 

aperiodic, irreducible, and returns normally, its stationary 

distribution π=(π1, π2,…)T is unique, and its limit 

distribution is the stationary distribution. According to the 

ergodic theorem, no matter what the initial distribution π′ 

is, after n transitions, that is Pn π′, it will eventually 

converge to its stationary distribution π, that is: 

lim
t→+∞

P(Xt = i|X0 = j) = πi i ∈ N+; j ∈ N+      (5) 

For any time t  and any state i, j  ∈S, the state 

distribution satisfies the following equation: 

P(Xt=i|Xt-1=j)πj=P(Xt-1=j|Xt=i)πi,i,j∈N+     (6) 

or abbreviated as: 

pjiπj = pijπi, i, j ∈ N+              (7) 

This is the meticulous equilibrium equation. 

The core idea of MCMC method is divided into the 

following 3 steps. Firstly, define an MC π=(π1, π2,…)T in 

the state space S of the random variable X to make its 

stable distribution as the sampling target distribution f(x). 

Secondly, randomly walk on this MC to get a sample at any 

time. Thirdly, find the mathematical expectation of the 

function according to the ergodic theorem. The meaning of 

the ergodic theorem is as follows: if the time tends to 

infinity and the sample distribution closes a stationary 

distribution, then the function mean of the sample is close 

to the mathematical expectation of the function. 

In this paper, Metropolis-Hastings algorithm 
[45]

, is 

adopted to define MC and transition kernel. Suppose a 

probability distribution that needs to be sampled is f(x) 

p(x, x′) = t(x, x′)β(x, x′)            (8) 

where x′ represents the candidate state; β(x, x′) is 

called the accepted distribution; t(x, x′) represents the 

transfer core of another MC; and it is called the suggested 

distribution. 

β(x, x′) = min {1,
p(x′)t(x′,x)

t(x,x′)p(x)
}           (9) 

Since 

p(x)t(x, x′) = p(x)t(x, x′) min {1,
p(x′)t(x′,x)

t(x,x′)p(x)
} 

= min*t(x, x′)p(x), t(x′, x)p(x′)+   

= t(x′, x)p(x′)min {1,
t(x,x′)p(x)

t(x′,x)p(x′)
}

= p(x′, x)p(x′)                   

  (10) 
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satisfies the meticulous equilibrium equation. The 

transition kernel p(x′, x) satisfies the ergodic theorem 

and the final stationary distribution is p(x), that is, the 

samples generated in this way conform to the p(x) 

distribution. 

It is suggested that t(x, x′)= t(x′, x), then 

β(x, x′) = min {
p(x′)

p(x)
, 1}           (11) 

Particularly, t(x, x′) = t(|x − x′|)  is called the 

random walk Metropolis algorithm, such as the normal 

distribution transition kernel:  

t(x, x′) ∝ exp .−
(x′−x)2

2
/           (12) 

Its characteristic is that when x′ is closer to the 

mean value x, the acceptance probability is higher. 

The steps of Metropolis-Hastings algorithm are: 

Ⅰ. According to the objective distribution function 

f(x)  to be sampled, select a suggested distribution 

t(x, x′) and randomly select an initial value x = x0; 

Ⅱ . According to the recommended distribution 

t(x, x′), a candidate state x′ is randomly selected and the 

acceptance probability is calculated : 

β(x, x′) = min {1,
p(x′)t(x′,x)

t(x,x′)p(x)
}          (13) 

Ⅲ. A number m is randomly selected from interval 

(0, 1) according to uniform distribution. If m≤β(x, x′), 

then accept the candidate state x′, otherwise, refuse to 

transfer.  

In the SS of this paper, the candidate state x′ newly 

generated by MCMC must meet the conditions x′ ∈ Fi, 

to ensure that the newly generated state is within the 

failure domain Fi area. 

3 Subset simulation method 

SS is a random simulation process for estimating 

SFP. Specifically, consider an engineering system 

constrained by random input parameters. The failure area 

E is defined as the sub-area of the response function G(x) 

less than a certain threshold b in x space, that is: 

E = *x: G(x) < b+#            (14) 

where x  represents the random input vector of all 

uncertain parameters. In the SS, G(x) can be a nonlinear 

implicit function of x. In many cases, the target failure 

probability PE related to the target failure event E may be 

small, so it is necessary to carry out much simulation to 

estimate the target failure probability to obtain the 

required accuracy, but it also reduces the computational 

efficiency. The SS method transforms an SFP into a 

product of a larger conditional probability sequence. This 

transformation method is to divide the input parameter 

space into subsets of fault domains. Therefore, it is 

necessary to define a series of intermediate failure events 

in the same way as the target failure event 

Ej = {x: G(x) < bj}, j = 1, … , m         (15) 

where m represents the total number of intermediate 

events, and bj  represents a set of thresholds of the 

system response function. Suppose E1, E2, … , Em  is a 

nested event sequence, that is, E1⊃E2⊃…⊃E2 =E, but 

the value of bj  cannot be predetermined. However, 

setting the conditional probability P(Ej|Ej−1) equal to a 

specified value. To ensure the nesting of Ej , set the 

threshold value as b1  > b2  >…> bm =0. Because all 

intermediate events are nested, then 

PE = P(E1) ∏ P(Ej|Ej−1)
m

j=2
           (16) 

In the reliability analysis, the SS starts from the 

first step, and the probability P1 related to the first 

intermediate event E1 is calculated as follows: 

P1 = P(E1) ≈
1

N
∑ IE1

(G(xi))N
i=1          (17) 

where N denotes the total number of samples of the 

first intermediate event, that is, the first simulation 

layer; *xi+ represents a random input vector sequence of 

all uncertain parameters in the system generated 

according to known PDF, which is an independent and 

identically distributed sample. IE1
(⋅) is an index function: 

IE1
(⋅) = *

0 if(xi) ≥ b1

1 if(xi) < b1
            (18) 

where the first intermediate event and its threshold 

are unknown, but if the conditional probability of each 

layer is set to a fixed value p1, the values of threshold b1 

and first intermediate event E1  can be determined 

according to Eq. (17). After generating *xi+, all N system 

response functions *G(xi)+ are calculated and sorted in 

ascending order so that  G(x1) ⩽ G(x2) ⩽ ⋯ ⩽ G(xN) . 

Let b1 be the sample quantile of the system response 

function in the first layer simulation, that is b1 =
G(x,P1N-), then samples x1, x2, … , x,P1N- all belong to the 

first intermediate event E1. 

In the subsequent intermediate event Ej, the sample 

source is the previous intermediate event Ej−1 . 

Considering that there are already ,N × Pj−1-  samples 

that belong to Ej−1, you can use the sampling method 

based on MCMC to get the required conditional samples 

*xi+ . Then use  P(Ej|Ej−1)  to perform probability 

estimation on the simulation layer: 

Pj = P(Ej|Ej−1) ≈
1

N
∑ IEj

(G(xi))
N

i=1
       (19) 

where the sample xi ∈ f(x|Ej−1), i =
1, … , N is produced by MCMC. Generate N − ,N × Pj−1- 
conditional samples in the intermediate event Ej−1 and 

combine them with the previously selected  ,N × Pj−1- 
samples. All N system response functions *G(xi)+ can be 

calculated, and sorted in ascending order. Let bj be the 

sample quantile of N system response values in event Ej, 

namelybj = G(x,PjN-). In this way, x1, x2, … , x,PjN-  all 

belong to intermediate event Ej. 

Iterate the above steps repeatedly. When the sample 

quantile of N system response values in space Ej−1 below 

b, that is bj = G(x,PjN-) < b, stop the iteration. At this 

point, the SS algorithm has reached the target failure 
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domain Em , that is, j = m  and bm = b . The final 

conditional probability estimates of P(Em|Em−1) is: 

P(Em|Em−1) ≈ Pm =
1

N
∑ IEm

(G(xi))
N

i=1
#   (20) 

Combining Eq. (16), (17), (18) and (19) 

PE = ∏ Pj

m

j=1
              (21) 

In the practical application, the value of Pj , 

j = 1, … , m are usually Pj=p0∈(0.1~0.3). 

Therefore, the steps of applying SS in MATLAB can 

be briefly summarized as follows: Ⅰ. Define the 

algorithm parameters; Ⅱ. Using direct MCS to generate 

the first intermediate failure event; Ⅲ. Using MCMC 

method to generate the remaining intermediate failure 

events; Ⅳ. Calculate the failure probability of the target 

event by multiplying the conditional probabilities of all 

intermediate failure events. 

The algorithm flow is shown in Figure 1: 

 

Figure 1  The flow chart of SS algorithm 

4 Examples 

4.1 The example 1 

The functional function of the mathematical example 

has been given: 

G(x) = 0.0185361 −
73.8221x1

x2
3         (22) 

where x1 ∼ N(1100,201.5)，x2 ∼ N(253,38.1), the 

failure mode is that the value of the function is below 0. 

Use SS to calculate its reliability. In the setting of 

basic parameters, the total number N of samples is 2000, 

and the conditional probability of each simulation layer is 

set to p0=0.25. By running the MATLAB program based 

on SS, the consequences are shown in Table 1: 

Table 1  shows the whole process of calculating 

the failure probability of the system response function 

by MATLAB. The program has implemented three 

random simulation layers, including one MCS layer (j=1) 

and two MCMC simulation layers (j=2, 3). The basis for 

stopping the cycle of this program is to judge the 

quantile of the current analog layer sample g(x,PjN-) is 

less than zero. Of course, the third simulation layer 

meets this criterion and reaches the failure zone of the 

system failure mode, so the program exits the loop. Then, 

it is found that the number of all samples in the 

simulation layer whose response value is less than zero 

is 540, so the failure probability of the response function 

is 9.2×10-3, and a total of 2000+1500+1500=5000 

random samples are needed. 

Table 1  The execution process of SS 

Simulation 

layer j 

Seed 

number 

Nj 

Number of 

samples 

generated in 

layer j N-Nj 

Condition 

P(U( j+1)|U( j)) 

The failure mode 

probability 

obtained by the J 

layer 

0 0 2000   

1 500 1500 0.25  

2 500 1500 0.25  

3 540  0.27 P(E1)=9.0×10-3 

For the rigor of the experiment, this paper also uses 

MCS to verify the accuracy of the result. After many 

attempts, it is found that the failure probability of the 

response function converges only when the total number 

of selected samples is above 105. The number of samples 

below this order of magnitude will affect the accuracy of 

the results, while the number above this order of 

magnitude will greatly affect the calculation efficiency. 

Therefore, we choose to randomly generate 200,000 

samples in the whole sample space according to the 

standard normal distribution and calculate all the 

corresponding response function values, and find out the 

total number of samples whose response value is less than 

zero, and the ratio of the total number to 200,000 is the 

required failure probability value. The comparison 

consequences are shown in Table 2. 

Table 2  Comparison of two methods 

Analogy procedure Failure probability 
Total number of samples 

required 

SS 9.0×10-3 5000 

MCS 9.5×10-3 200000 

Use MATLAB to draw the cumulative 

distribution curve of the response function. It is shown 

in Figure 2 and Figure 3. 

Start

Set parameters and draw samples

Calculate the response value and 

determine the failure threshold of the 

corresponding sample

CPF

Generate new 

samples based on 

MCMC

End

Sufficient number of iterations or 

system failure？

Yes

No
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Figure 2  The CDF curve (a) 

 

Figure 3  The CDF curve (b) 

The results calculated by SS are represented by red 

real lines, and the results calculated by MCS are 

represented by blue virtual lines. It can be seen that the 

result of SS fits well with that of direct MCS, and it can 

be found from semi-logarithmic coordinate Figure 3 that 

the SS can also accurately fit the part with SFP. Only after 

the order of magnitude is 10-4 will there be a significant 

difference. Therefore, it can be concluded that while 

ensuring a certain accuracy, the SS only needs 5000 

samples to accurately calculate the failure probability of 

the failure mode corresponding to the response function, 

while the direct MCS needs dozens or even hundreds of 

samples. Therefore, the application of SS in SFP problem 

can greatly improve the computational efficiency and 

save computational resources. 

4.2 The example 2 

Calculate the reliability of the single-layer portal 

frame structure as shown in the Figure 4. The elastic 

modulus values of beams and columns are both taken as: 
6 22 10 kN/mE   . There is a correlation between the 

section moment of inertia and the section area: 2

i i iI a S . 

F is the load variable, S1 and S2 respectively represent 

the cross-sectional area of the beam and column, and the 

statistical information of each random variable is shown 

in Table 3. The response of the structure is taken as the 

displacement value of the top layer of the rigid frame, and 

the displacement limit of the structure is 0.01m, then the 

performance function of the structure based on 

displacement is: 

   0.01Z g X u X             (22) 

 

Figure 4  The schematic diagram of single-layer portal frame 

Table 3  The information of random variables 

Basic 

variables 

Distribution 

type 
Mean 

Standard 

deviation 
αi 

A1 Lognormal 0.34 0.034 0.08234 

A2 Lognormal 0.16 0.016 0.16333 

P 
Extreme value 

type Ⅰ 
20 5.0 -- 

In this section, the rod system model in the 

OpenSees software is used to simulate the plane rigid 

frame, and the beams and columns are taken as the basic 

elements. 

This section considers the correlation between A1 

and A2. The nonlinear correlation coefficient τk is set to 

0.0 and 0.3, respectively, and the SS is used for reliability 

analysis. At the same time, the failure probability and 

reliability index obtained by MCS for 100,000 simulations 

are compared with the SS, as shown in Table 4. 

From Table 4 can know that the SS greatly reduces 

the number of calculations and obtains more accurate and 

reliable indicators. As shown in Figure 5, through the 

cumulative distribution curve of the performance function, 

it can be seen that the curve fitting degree of the SS and 

the MCS method is better. In the semi-logarithmic 

coordinates, it can be seen that the cumulative distribution 

curve only has a significant difference after the order of 

magnitude is 10-4. 

In the process of applying the SS, when the number 

of selected samples N and the conditional probability P0 

are different, the calculated results are different. The 

number of samples is N=100, 200, 500, 1000; the 

conditional probability is P0=0.1, 0.2, 0.3, 0.4. Draw the 

cumulative distribution function curve, as shown in 

Figure. 6. The difference can almost be bridged with 

MCS for 100,000 times. 
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Table 4  The result analysis and comparison 

Correlation 

coefficient 
Method 

Reliable 

indicators 

Probability 

of failure 

Total sample 

points 
Time (s) 

τk=0.0 
MCS 2.7910 2.130×10-3 100000 14382 

SS 2.7994 2.060×10-3 450 74 

τk=0.3 
MCS 3.0842 9.875×10-4 100000 13985 

SS 3.0210 5.182×10-4 500 91 

 

 

Figure 5  The CDF curve of performance function of 

portal frame 

 

 

Figure 6  The CDF curve of different initial sample 

points and failure probability combination 

In Figure 6 (a), (b), (c), as the initial number of 

samples increases, the curve tail fitting becomes more 

accurate. It can be seen that the more the number of initial 

sample points, the better the simulation probability of a 

smaller range of points. When the initial sample points 

are small, the sample points with small occurrence 

probability will be ignored. For the selection of the 

conditional failure probability, when a smaller conditional 

probability is selected, the simulation curve of the SS and 

the curve of the MCS fit better, but the number of 

calculation subsets increases and the calculation 

efficiency decreases. It can be seen that the selection of 
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appropriate initial sample points and conditional failure 

probability has a certain impact on the accuracy and 

efficiency of the SS. 

5 Conclusion 

Aiming at the calculation of SFP in reliability 

analysis of engineering system, this paper discusses it 

based on SS. The SS adaptively extracts samples by 

applying MCMC method, and divides the whole 

probability space into a series of nested subspaces, which 

makes the subspaces approach to the failure area 

continuously. Therefore, the SFP of the target event can 

be accurately forecasted with a relatively small number of 

samples, and the calculation efficiency is improved. The 

reliability assessment method based on SS is constructed, 

and the analysis method is realized in two examples, 

which verifies the effectiveness of the proposed method. 

Then, this method is used in the engineering example to 

analyze the reliability problem. 
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