
 

Mechanical Engineering Science  Vol. 4  No.2  2022                                                                         1 

Viser Technology Pte. Ltd.  
Mechanical Engineering Science 
DOI: 10.33142/mes.v4i2.9082 

  

A multi-source information fusion method for tool life 

prediction based on CNN-SVM 

Shuo WANG, Zhenliang YU
*
, Peng LIU, Man Tong WANG 

School of Mechanical and Power Engineering, Yingkou Institute of Technology , Yingkou, China 

*Corresponding Author: Zhenliang YU, email address:yuzhenliang_neu@163.com 

Abstract: 

For milling tool life prediction and health management, accurate extraction and dimensionality reduction of its tool wear features are 

the key to reduce prediction errors. In this paper, we adopt multi-source information fusion technology to extract and fuse the features 

of cutting vibration signal, cutting force signal and acoustic emission signal in time domain, frequency domain and time-frequency 

domain, and downscale the sample features by Pearson correlation coefficient to construct a sample data set; then we propose a tool 

life prediction model based on CNN-SVM optimized by genetic algorithm (GA), which uses CNN convolutional neural network as the 

feature learner and SVM support vector machine as the trainer for regression prediction. The results show that the improved model in 

this paper can effectively predict the tool life with better generalization ability, faster network fitting, and 99.85% prediction accuracy. 

And compared with the BP model, CNN model, SVM model and CNN-SVM model, the performance of the coefficient of 

determination R2 metric improved by 4.88%, 2.96%, 2.53% and 1.34%, respectively. 
Keywords: CNN-SVM; tool wear; life prediction; multi-source information fusion 

 

1 Introduction 

CNC machining center is a set of high-tech, high 

precision, high efficiency in one of the high precision end 

equipment, specifically for processing complex curved 

parts, its key technology to improve the level of 

equipment manufacturing industry is of great significance. 

CNC machining center due to the complexity of the 

processing object tool wear more serious, when the tool 

wear exceeds a given threshold will greatly affect the 

accuracy of the workpiece processing, resulting in the 

processing of product quality is not up to standard, not 

only waste processing input time and economic losses, 

and even lead to machine accidents
[1]

 . For complex 

curved parts with high precision machining requirements, 

how to make the tool wear before the critical threshold for 

intelligent tool change will be an important research 

direction for the future high-end manufacturing industry. 

Currently, data-driven methods combining sensor 

monitoring data with machine learning algorithms are 

widely used for tool life prediction 
[2]

. Monitoring data 

refers to the extraction of tool wear features in the time 

domain, frequency domain, and time-frequency domain 

using sensor technology to collect raw signals. However, 

most experts and scholars predict tool wear for only one 

signal
[3]

 , which often has a low prediction accuracy, so in 

this paper, three signals, cutting vibration signal, cutting 

force signal and acoustic emission signal, are collected in  

real time, and a multi-source information fusion 

strategy is adopted to fuse the features extracted from 

each signal and construct a sample feature matrix, so as to 

improve the accuracy of tool life prediction. Machine 

learning algorithm is to use the extracted tool wear 

features as the input of the model, simulate the whole 

process of tool life degradation, and compare the current 

working state with the historical data to complete the 

prediction of the remaining tool life 
[4]

. Common machine 

learning algorithms include BP neural network, RBF 

neural network, Support vector machine (SVM) etc. 

Wei Weihua 
[5]

 et al. optimized the BP neural 

network by genetic algorithm, which improved the 

optimization and learning ability of the model and 

ensured the efficiency and accuracy of tool wear 

recognition. Weiqing Cao
[6]

 et al. diagnosed the tool wear 

fault by fusing the information of RBF neural network 

and D-S evidence theory, and the experiment showed that 

the model could effectively diagnose the tool wear fault 

and its prediction accuracy was improved. The model can 

effectively diagnose the tool wear fault and its prediction 

accuracy is improved. Zhang Kun
[7]

 et al. constructed 

DCM-SVR model to predict the tool wear value of 
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machining process, which can correct the systematic error 

online and compensate the predicted value, and the results 

of comparison with other methods show that the 

prediction performance of DCM-SVM is improved by 

28.7% and the root mean square error is decreased by 

64.7%. Although the traditional tool life prediction 

methods have achieved certain results, the prediction 

model can only tap the shallow features of the sample 

data, the generalization ability is insufficient, the network 

fitting speed is slow, and it relies more on signal 

processing techniques and expert experience. 

In 2006, Hinton 
[8]

 et al. proposed the theory of deep 

learning, and convolutional neural network (CNN) is a 

typical representative of deep learning. Convolutional 

neural networks (CNNs) have powerful feature extraction 

ability, can adaptively mine the deep features of the input 

data, and get rid of the model's over-reliance on signal 

processing techniques and expert experience, so they have 

been widely used and researched by scholars in recent 

years. P. K. Ambadekar 
[9]

 et al. established a tool life 

prediction system using CNN convolutional neural 

networks, where an inverted microscope regularly takes 

The images of the tool were used as input and different 

categories of tool wear were used as output, and the 

results showed that the accuracy of the prediction using 

CNN model reached 87.26%, which can meet the 

practical needs of production. However, the output layer 

of the convolutional neural network (CNN) generally 

consists of a fully-connected layer and a Softmax layer. 

When dealing with data with a high degree of nonlinearity, 

the number of features in the output of the 

fully-connected layer increases proportionally, which can 

cause the overfitting phenomenon
[10]

 ; moreover, the 

prediction performance of the Softmax layer is not as 

good as that of the support vector machine (SVM) in 

dealing with regression problems. Therefore, the 

combination of convolutional neural network (CNN) and 

support vector machine (SVM) can make up for the 

shortcomings of the above CNN model. 

CNN-SVM is a tool life regression prediction model 

proposed by combining convolutional neural network 

(CNN) and support vector machine (SVM) methods, but 

if we want to continue to improve the model prediction 

performance we need to optimize the model 

hyperparameters, such as penalty parameterρ and kernel 

function width g, etc. Currently, the more common 

parameter optimization methods include manual 

parameter tuning, random optimization 
[11]

 , 

gradient-based optimization
[12]

 , and genetic algorithm 

optimization
[13]

. The genetic algorithm is scalable and 

easy to combine with other algorithms, and it can achieve 

fast optimization with less computation time and high 

robustness when computational accuracy is required, so it 

has attracted a lot of attention from scholars in the field of 

hyperparametric optimization in recent years 
[14]

 . 

Therefore, this paper uses a CNC machining center 

as a platform to collect cutting vibration signals, cutting 

force signals and acoustic emission signals of tools under 

different wear states in real time using sensor technology, 

and proposes a tool life prediction model based on 

CNN-SVM optimized by genetic algorithm (GA). The 

model uses CNN convolutional neural network as a 

feature learner and SVM support vector machine as a 

trainer for regression prediction. The powerful 

computational capabilities of the convolutional and 

pooling layers of the CNN convolutional neural network 

model are utilized to reduce the loss rate of tool wear 

features during translation and effectively control the 

fitting ability of the model; meanwhile, the powerful 

depth search and global search capability of the genetic 

algorithm is utilized to optimize two parameters, penalty 

factor c and kernel function radius g, in the SVM 

support vector machine to improve the tool life 

prediction accuracy. 

2 Construction of CNN-SVM-GA prediction 

model 

2.1 Convolutional Neural Network (CNN) 

Convolutional neural network (CNN)
[15]

 is a kind of 

neural network, a typical representative of deep learning, 

fundamentally it is a further extension of BP neural 

network, its main difference is the convolutional 

operation and pooling operation, which can realize local 

connection and weight sharing and greatly shorten the 

training time. CNN network structure contains not only 

the input layer, fully connected layer and output layer in 

BP network, but also its unique convolutional, pooling 

and RELU layers, the training model parameters still use 

gradient descent method to finally complete the 

regression prediction task. The principle is as follows: 

(1) The sample feature matrix is input to the CNN 

convolutional neural network for convolutional operation. 

The sample information is indirectly characterized by the 

local features of the sample through the weight value of 

each layer derived from the convolutional operation, and 

the higher the layer is, the more detailed the local features 

are extracted, and also the spatial continuity of the sample 

is maintained: 

Xi
k =∑Wi

kj
⨂Xi−1

j
+ bi

k                       (1)

n

j=1

 

Where Xi
k  denotes the feature matrix of the kth 

neuron at the output of the ith layer, andWi
kj

 denotes the 

weight value of the kth neuron in the ith layer, and ⨂ 

denotes the convolution operator, and Xi−1
j

 denotes the 

feature matrix of the jth neuron at the output of layer i-1, 

and bi
k is the bias coefficient of the kth neuron in layer i. 

(2) In order to improve the prediction accuracy of 

the tool wear life model, the CNN network uses ReLU 

function for nonlinear activation, which has good 

non-saturation characteristics to avoid the gradient 
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disappearance phenomenon. The activation function is 

shown in equation (2): 

Vi
k = Relu(Xi

k) = {
0, xi

k < 0

xi
k, xi

k＞0
                      (2) 

Where xi
k is the Xi

k each eigenvalue in the feature 

matrix. 

(3) Each tool wear feature data is input to the 

pooling layer after convolution operation, and the pooling 

type is chosen as maximum pooling, which can retain the 

original features and reduce the parameters of network 

training, and improve the robustness of the extracted 

features. The maximum pooling is shown in equation (3): 

Ci
k(s, t) = Max

1+(s−1)Q≤d≤sQ

1+(t−1)P≤h≤tP

{Vi
k(d, h)}                (3) 

where Vi
k(d, h) is the eigenvalue of column h of row 

d of the ith feature matrix input to the pooling layer, and 

Ci
k(s, t) is the eigenvalue of the sth row t column of the ith 

feature matrix obtained after pooling, and P and Q are the 

length and width of the pooled region, respectively. 

(4) The n feature matrices of dimension S × T, which 

are derived from each row of the sample feature matrix 

after two convolution and pooling operations, are input to 

the global average pooling layer. The dimensionality of 

the pooling kernel of the global average pooling layer is 

kept consistent with the dimensionality of the feature 

matrix, and the n feature matrices are dimensionality 

reduced to reduce the covariance of the sample features 

and avoid the influence of redundant features, thus 

reducing the training time of the LSTM long and short 

term memory network, so the whole CNN model finally 

outputs a feature vector Xt = {x1 , x2 , ... , xi , ... , xj , } 

where xi is calculated as shown in equation (4): 

xi =
1

ST
∑∑Ci

k(s, t)                            

T

t=1

(4)

S

s=1

 

According to the above, CNN networks also have 

shortcomings, such as overfitting when encountering data 

sets with a small number of features or high nonlinearity, 

which affects the accuracy of prediction. To address this 

problem, the SVM classifier needs to be used instead of 

the Softmax classifier in the CNN model to compensate 

for this disadvantage. 

2.2 Support vector machine (SVM) 

Support vector machine (SVM) 
[16] 

was proposed in 

1995 by Cortes and Vapnik et al. Based on statistical 

theory, this learning model has a supervised mechanism 

that can perform tasks such as pattern recognition, 

classification, and regression analysis. In this paper, the 

feature vector output from the global average pooling 

layer is used as the input of the SVM support vector 

machine model. The biggest advantage of the SVM 

algorithm is that it can handle data with high nonlinearity, 

and the number of features in the data set has basically no 

effect on its model complexity, so it can accomplish 

regression prediction for data sets with relatively large 

number of features. The mathematical model of SVM is 

shown in equation (5): 

{
 
 

 
 

min 
1

2
‖w‖ +ρ∑ξ

r

L

r=1

s. t. yr(wXr + b) +ξ
r
≥ 1, r = 1,2，⋯，L

     (5) 

Where w is the normal vector of the hyperplane, 

andρ is the penalty parameter, the ξr is the relaxation 

factor, b is the offset coefficient, and Xr is the feature 

vector of the rth sample, andyr is the tool wear value, L 

is the total number of feature samples, and the total 

number of samples in this paper is 315. 

The model of Eq. (5) is mostly used to deal with 

linearly divisible sample feature data, but the tool life 

sample data is linearly indivisible, so it is necessary to 

introduce the kernel function to up-dimension each 

labeled sample data. In this paper, the Gaussian radial 

basis kernel function is used to transform the nonlinear 

data of each label state into linear data in 

high-dimensional space, so that the analysis is possible, 

and then the optimal classification hyperplane is 

constructed based on the principle of maximizing the 

classification interval to complete the prediction of tool 

life, and the Gaussian radial basis kernel function is 

shown in Eq: 

K(X) = sgn(∑ar
∗

L

r=1

yrexp (−
‖Xr − X‖

2

2g2
) + θ∗)   (6) 

where sgn  is the sign function, ar
∗  is the 

Lagrangian multiplier, g is the kernel function width, and 

X is the sample label data, and θ∗ is the configuration 

factor. 

The width parameter g and the penalty coefficient c 

of the radial basis kernel function are the focus of the 

SVM algorithm tuning, which directly affect the training 

speed and prediction accuracy of the model, so how to 

find the optimal c and g parameter matching is the key of 

SVM model regression analysis. 

2.3 Genetic Algorithm (GA) 

Genetic Algorithm (GA) 
[17]

 is an intelligent 

algorithm that originates from the laws of nature and the 

mechanism of superiority and inferiority among living 

organisms. Using genetic algorithm, global search for 

superiority can be achieved, usually with three most 

important steps of selection, crossover and mutation, 

which are similar to the genetic laws of individual 

biological chromosomes. Therefore, this algorithm is 

widely used to solve search problems or to optimize some 

hyperparameters. Firstly, through coding, the set of 

strings of problem solutions is transformed into 

individuals that can be recognized by the genetic 

algorithm. Therefore, individuals with high adaptation 

values will survive and generate the next generation, 
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while individuals with low adaptation values will be 

eliminated; secondly, individuals with medium adaptation 

values will be "crossed over" to generate new individuals, 

which will form a new population with the original 

adaptive individuals; finally, the new population will be 

"mutated", i.e. Finally, the new population is subjected to 

"variation", i.e., the adaptation value of some individuals 

in the population is changed; so on and so forth, the 

whole population develops to a higher level and finally 

evolves the most adaptive individuals, i.e., the optimal 

solution, to complete the task of global optimization, etc. 

The optimization process of the genetic algorithm (GA) is 

shown in Figure 1. In this paper, it is the genetic 

algorithm (GA) that is used to complete the selection of 

hyperparameters in the SVM model, so as to improve the 

prediction accuracy and precision of the model. 

 

Figure 1  Flow chart of Genetic algorithm (GA) 

2.4 CNN-SVM model 

The essence of CNN-SVM convolutional support 

vector machine multi-input single-output regression 

prediction model is to use the CNN convolutional neural 

network model as a feature fuser and the SVM support 

vector machine as a trainer for regression prediction. The 

principle is firstly based on CNN convolutional neural 

network structure, using its convolutional layer in the 

network to obtain the weight parameters, pooling layer 

for dimensionality reduction, the sample set can be 

automatically feature mining and extraction from the 

input information without doing complex pre-processing, 

and fusion of features from shallow to deep as the 

network is continuously passed backwards. Its fusion 

pattern framework diagram is shown in Figure 2. Then 

the output feature vector (fusion value) is directly used as 

the input of SVM support vector machine for training, 

and the SVM model transforms these fusion values from 

low-dimensional space to high-dimensional space after 

CNN model processing, and then constructs an optimal 

decision function with the principle of maximizing 

classification interval to complete the regression 

prediction problem of data in low-dimensional space, 

which can realize the tool life prediction in the milling 

process using this method. Intelligent prediction of tool 

life in milling. The structure diagram of the CNN-SVM 

model is shown in Figure 3. 

 

Figure 2  CNN model fusion model framework diagram 

 

Figure 3  Structure of CNN-SVM model 

2.5 CNN-SVM-GA hybrid model 

The hybrid CNN-SVM model constructed in this 

paper uses genetic algorithm (GA) to optimize the two 

parameters of penalty factor c and kernel function radius 

g in the tool life prediction model of CNN-SVM 

described above. The resulting optimal solution is 

decoded as a parameter of the support vector machine to 

improve its generalization ability, speed up the network 

fitting, and make the tool wear prediction more accurate. 

The algorithmic flow of the tool life prediction technique 

based on CNN-SVM optimized by genetic algorithm is 

shown in Figure 4, and the specific steps are as follows: 

Step 1: The original signal (7 channels) related to 

tool wear is processed for noise reduction and feature 

extraction and fusion in the time domain, frequency 

domain and time-frequency domain, respectively. 

Step 2: Using Pearson's correlation coefficient 

formula for the above feature data to perform 

dimensionality reduction and random division of them to 

construct the training set and test set of the model. 

Step 3: building a convolutional neural network, 

trained using the training and test sets from step 2, the 

output of which is a feature vector. 

Step 4: Perform PCA feature dimensionality 

reduction on the extracted feature vectors to reduce the 

training time of the SVM and form a new training and 

test set. 

Step 5: The SVM model is trained with the training set 

formed in step 4, and the g and c parameters of the support 

vector machine are optimized using a genetic algorithm. 

Step 6: Input the test set formed in step 4 to the improved 

CNN-SVM model to test the model diagnostic effect. 
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Figure 4  Improved CNN-SVM lifetime prediction model 

3 Tool wear experiment process 

The experimental data were obtained from the open 

data of the 2010 High Speed CNC Machine Tool Health 

Prediction Competition of the Prediction and Health 

Management Society (PHM), New York, USA
[18]

 , whose 

tool wear experimental conditions are shown in Table 1. 

Table 1  Experimental conditions for tool wear 

Hardware 

Conditions 

Model and main 

parameters 

Cutting 

Conditions 
Parameters 

CNC Milling 

Machine 

CNC Milling Machine 

Roders Tech RFM760 
Spindle speed 10400 

Force Gauge 
Three-way force gauge 

Kistler 9265B 
Feeding speed 1555 

Charge amplifier 

Multi-channel charge 

amplifier 

Kistler 5019A 

Back draft 0.2 

Milling Material 
cube 

Inconel 718 

Side-draft 

amount 
0.125 

Tools 
Ball end carbide milling 

cutter 3 teeth 
Feed amount 0.001 

Data Acquisition 

Cards 

Data Acquisition Cards 

NI DAQ 

Sampling 

frequency 
50 

Wear Gauge 
Microscope 

LEICA MZ12 

Cooling 

conditions 
Dry cutting 

In the process of machining, the spindle speed was 

10400 RPM, the feed was 0.001 mm, the feed speed was 

set to 1555 mm/min, the tool side draft was 0.125 mm, 

and the tool back draft was 0.2 mm. The shape of the 

milled part was square, and the end face was milled by 

round-trip milling, and the length of the milled part was 

about 108 mm. The surface length is about 108 mm, and 

the machining process does not use cutting fluid.∆t The 

wear value of the rear face of the three teeth of the ball 

end mill was checked after each time. In this paper, the 

experimental data set of the first tool of C1 group is 

selected, and the data set collects and monitors the data of X, 

Y and Z axes cutting force signals, X, Y and Z axes vibration 

signals and acoustic emission signals, with a total of 7 

channels, each channel walking 315 times, the acquisition 

frequency is 50 KHz per channel, and the number of 

sampling points is above 200000 each time, and its related 

specific data acquisition system is shown in Figure The 

specific data acquisition system is shown in Figure 5. 

 

Figure 5  Tool wear data acquisition system 

Since the milling cutter used in the experiment has 

three teeth, the wear of the three teeth was measured after 

every∆t The wear of the three teeth was measured after 

each time. Figure 6 shows the wear curve of the first 

group of test tools, the purple curve is the wear of the first 

tooth, the blue curve is the wear of the second tooth and 

the yellow curve is the wear of the third tooth. In this 

paper, the average value of the wear of these three tool 

teeth is taken to represent the actual wear of the tool, and 

this average value is the sample target value of the 

improved CNN-SVM convolutional support vector 

machine model, i.e., the output data. From the figure, it 

can be seen that the tool wear is faster at the beginning of 

the tool wear period, flatter when it enters the middle 

period, and faster at the later period, which is consistent 

with the theory related to tool wear, which indirectly 

verifies the accuracy of the data set. 

 

Figure 6  Test tool wear variation curve 
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4 Pre-processing of tool wear characteristics 

4.1 Feature extraction and fusion 

During CNC machining, sensor technology is used 

to collect real-time signals related to tool wear. In this 

paper, cutting vibration signals are collected using a 

Kistler 8636C piezoelectric accelerometer, cutting force 

signals are collected using a Kistler 8152 three-way 

platform dynamometer, and acoustic emission signals are 

collected using a Kistler 9265B acoustic transmitter. The 

number of signal data collected above is huge, and there 

is a lot of noise, which is often caused by the instability of 

the system at the moment of cutting in and out of the tool, 

so it is necessary to perform noise reduction processing 

on the various types of raw signals collected above. The 

number of times the tool is walked in this experiment is 

315, and the number of acquisition points for each knife 

walk is about 200000 or more. In order to avoid adverse 

effects during model training, the sampling points with data 

labels of 50001 to 100000 in each acquisition signal are 

extracted for feature extraction and fusion in this paper. 

 

Figure 7  Wear feature extraction and fusion scheme 

The feature quantities related to the tool wear state 

are extracted in the time domain, frequency domain, and 

time-frequency domain for the above three types of 

signals, respectively. In order to realize the intelligent tool 

wear prediction, the time domain features of the original 

signal are extracted, including 13 kinds, namely, mean 

value, standard deviation, skewness, cliffness, maximum 

value, minimum value, peak-to-peak value, root mean 

square, amplitude factor, waveform factor, impact factor, 

margin factor, and energy; the frequency domain features 

are extracted, including 5 kinds, namely, frequency 

domain amplitude mean, center of gravity frequency, 

mean square frequency, variance frequency, and 

frequency variance; the time The extraction of frequency 

domain features mainly uses wavelet packet analysis to 

subdivide the original signal into different frequency 

bands, when the tool wear state changes the energy 

parameters of different frequency bands will also change, 

so the energy of each frequency band is the extracted 

time-frequency domain features. The wavelet packet 

decomposition is performed on the original signal, and 

the number of decomposed layers is set to 3, all of which 

are completed by db5 wavelet base, and the frequency 

domain is divided into 8 frequency bands, so that 8 

time-frequency domain features are extracted. In this 

experiment, the original signals of cutting vibration signal 

(3 channels), cutting force signal (3 channels) and 

acoustic emission signal (1 channel) are extracted and 

fused every ∆ t time, as shown in Figure 7, 13 time 

domain features, 5 frequency domain features and 8 

time-frequency domain features are extracted from each 

channel signal, so 26 features can be extracted from each 

channel signal, for a total of 7 channels and 182 features 

in total. The total number of features is 182. 

4.2 Feature dimensionality reduction processing 

The speed of the tool wear prediction model fitting 

operation is closely related to the number of features, the 

more features the more complex the model is, the slower 

the operation is, so it is necessary to filter and optimize all 

the features. The best way is to find the correlation 

between the above mentioned 182 features and the tool 

wear, and to delete the uncorrelated or weakly correlated 

features, thus optimizing the extraction of the tool wear 

signal features and making the model operation speed 

increase. The Pearson correlation coefficient is the most 

widely used correlation coefficient analysis method, 

which can be used to measure the correlation between the 

extracted eigenvalues and the tool wear amount 
[19]

. It is 

calculated as shown in equation (7): 

Pxy =
n∑xiyi −∑xi∑yi

√n∑xi
2 − (∑ xi)

2√n∑yi
2 − (∑yi)

2
       (7) 

wherePxy denotes the Pearson correlation coefficient 

of the signal feature x and the tool wear value y. where n 

denotes that there are n sets of signal values andxi 

denotes the ith value of the signal characteristic value, 

andyi denotes the ith value of tool wear. The Pearson 

correlation coefficient formula is used to calculate the 

correlation between the above 182 features and the tool 

wear values. Figure 8 shows the correlation of Pearson 

coefficients for each feature, the red area is|Pxy| < 0.5 

the features that are weakly correlated, with a total of 48 

feature values; the yellow area is0.5 ≤ |Pxy| < 0.9 The 

yellow area is for the features that are moderately 

correlated, with a total of 87 feature values; the green area 

is for the features that are strongly correlated, with a total 

of 87 feature values.|Pxy| ≥ 0.9 The green area is for the 

features that are strongly correlated, with a total of 47 

eigenvalues. In this paper, the 47 strongly correlated 

features are used as the input data for the training and 
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prediction of CNN-SVM model, so as to improve the 

computational speed and accuracy of tool wear prediction. 

 

Figure 8  Correlation of Pearson coefficients for each feature 

5 Tool wear experiment results and analysis 

5.1 Construction of the sample set data 

In this paper, firstly, sensor technology is used to 

collect the signals related to tool wear (7 channels), 

secondly, the original signals are subjected to noise 

reduction processing, feature extraction, feature fusion, 

dimensionality reduction processing and other operations 

respectively, and 47 strongly correlated features are 

derived to form a feature matrix as the input data for the 

training and prediction of the life prediction model, and 

its sample feature matrix dimension is 315×47; the wear 

of the three teeth of the milling tool is Finally, the above 

feature matrix is randomly sampled and feature coded, 

and then the training set and test set are divided, and the 

first 200 data are taken as the training set and the 

remaining data are taken as the test set. 

5.2 Setting of prediction model parameters 

In this paper, the sample set data are input to a 

CNN-SVM model based on genetic algorithm (GA) 

optimization for tool life prediction, where the initial 

learning rate parameter of CNN convolutional neural 

network is set to 0.001, the cross-entropy function is used 

as the loss function of the whole model, and the Adam 

optimizer is selected to optimize the hyperparameters, 

which is set to make the model generalization ability 

stronger. Second, the Softmax classifier on the fully 

connected layer is replaced with the SVM algorithm to 

better handle data with high nonlinearity, and an optimal 

decision function is constructed to complete the 

regression prediction of tool wear. 

The CNN-SVM-GA model selects the penalty 

parameter in the SVM modelρ and the kernel function 

width g, which are both set between 0 and 3, as the 2 

parameters for the optimization search process. The 

genetic algorithm (GA) adopts the strategy of superiority 

selection, crossover and variation to find the optimal 

hyperparameter pairing, with the crossover rate set to 0.35, 

the variation rate set to 0.1, the population size set to 20, 

and the evolutionary generation set to 3000. The specific 

parameters are shown in Table 2. Ten optimization 

operations were performed according to the parameters in 

Table 2, and the average value was taken as the final 

result, where the penalty parameter ρ  The optimized 

kernel function g is 1.421.ρ The optimized parameters, g, 

are migrated to the CNN-SVM model to complete the 

tool life prediction. 

Table 2  Genetic algorithm (GA) parameter settings 

GA algorithm parameters Parameter Value 

Evolutionary Algebra 3000 

Population size 20 

Crossover Rate 0.5 

Variation rate 0.1 

In order to quantify the prediction performance of 

the tool life model, three objective evaluation indicators 

are selected, namely the mean absolute error MAE, the 

root mean square error RMSE and the coefficient of 

determination R2. Among them, the mean absolute error 

MAE can obtain an evaluation value, but the comparison 

between different models is necessary to reflect the 

model's merit; the mean square error RMSE can measure 

the deviation between the observed value and the true 

value, the smaller the RMSE value, the better our model 

is. The smaller the RMSE value is, the better the model is; 

the coefficient of determination R2 can directly 

characterize the merit of the model, and the closer the 

value of the coefficient of determination R2 is to 1, the 

higher the accuracy and precision of the prediction model 

is. The three evaluation indicators are calculated as shown 

in equations (8) to (10): 

𝑀𝐴𝐸 =
∑ |𝑦𝑡 − �̂�𝑡|
𝑚
𝑡=1

𝑚
                             (8) 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑡 − �̂�𝑡)2
𝑚
𝑡=1

𝑚
                     (9) 

𝑅2 = 1 −
∑ (𝑦𝑡 − �̂�𝑡)

2𝑚
𝑡=1

∑ (𝑦𝑡 − �̅�)2
𝑚
𝑡=1

                     (10) 

where, m is the number of samples output from the 

fully connected layer, the number of samples in this paper 

is 315, andŷt is the predicted value of tool wear, andyt is 

the actual value of tool wear. 

5.3 Tool life prediction results 

Based on the open data of the CNC machining center 

tool health prediction contest, the CNN-SVM algorithm 

optimized by genetic algorithm (GA) was used for tool 

wear regression prediction, and its test set prediction 

results are shown in Figure 9. The mean absolute error 

MAE value of the model was calculated to be 0.7231, the 

root mean square error RMSE value was 0.8292, and the 

coefficient of determination R2 value was 0.9985. The 
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results show that the regression prediction of tool life can 

be effectively performed using the CNN-SVM-GA-based 

model with good results. 

 

Figure 9  CNN-SVM-GA test set prediction results 

Table 3 shows the effect of genetic algorithm (GA) 

on the tool life regression prediction model, where the 

penalty parameters of the CNN-SVM model ρ  and 

hyperparameters such as kernel function width g are 

chosen randomly by relying on manual, it can be seen that 

the CNN-SVM model optimized using genetic algorithm 

(GA) has the best tool life prediction. Compared with the 

CNN-SVM model, its mean absolute error MAE and root 

mean square error RMSE are reduced and the coefficient 

of determination R2 is improved, and its performance 

index reaches 0.99, while the performance index of the 

CNN-SVM model with manually selected parameters is 

maintained at a maximum of about 0.98. This is mainly 

because the hyperparameter optimization of the 

CNN-SVM model by Genetic Algorithm (GA) has 

obtained more accurate hyperparameter pairings, found 

the most critical attributes affecting the accuracy of tool 

life prediction, and avoided the blindness of setting 

parameters, thus improving the prediction effect. 

Table 3  Effect of genetic algorithm (GA) on the 

prediction model 

Algorithm 

Hyperparameters Test set prediction results 

Penalty 

Parameter 

Kernel 

width 
MAE RMSE R2 

CNN-SVM 

0.5 0.5 2.4859 2.8570 0.9817 

1 1 1.1671 1.4557 0.9851 

2 2 3.2250 4.1678 0.9628 

3 3 4.1927 5.7604 0.9296 

CNN-SVM-GA 0.511 1.421 0.7231 0.8292 0.9985 

To further validate the prediction performance of 

CNN-SVM-GA based tool life, a comparative analysis 

was performed with other traditional prediction models in 

the past, such as BP neural network, CNN convolutional 

neural network, SVM support vector machine, and 

CNN-SVM model. Figure 10 shows the comparison 

results of four traditional tool life prediction models, and 

it can be seen from Figure 9 and Figure 10 that the root 

mean square error RMSE performance of the five tool life 

prediction models is ranked as CNN-SVM-GA < 

CNN-SVM < CNN < SVM < BP, and their root mean 

square error is reduced by 83.06%, 78.13%, 74.45%, and 

43.04%, respectively. It can be seen that the CNN-SVM 

model based on genetic algorithm (GA) optimization 

proposed in this paper has obvious advantages in tool life 

prediction, which is because the CNN-SVM-GA model 

can deeply mine the hidden layer features of the data with 

high nonlinearity, the feature extraction is comprehensive, 

and the selection of hyperparameters does not have any 

dependence on expert experience. 

 
(a) 

 
(b) 

 
(c) 
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(d) 

Figure 10  Prediction results of the four traditional models 

(a) BP model (b) CNN model (c) SVM model (d) CNN-SVM model 

Table 4  Comparison of prediction performance results 

of five models 

Algorithm 
Test set prediction results 

MAE RMSE R2 

BP Neural Network 3.6862 4.8952 0.9498 

CNN Algorithms 2.5274 3.2457 0.9732 

SVM Algorithms 2.5671 3.7920 0.9689 

CNN-SVM Algorithm 1.1671 1.4557 0.9851 

CNN-SVM-GA 

Algorithm 
0.7231 0.8292 0.9985 

Table 4 shows the comparison results of the 

prediction performance of the five models, and it is found 

that the CNN-SVM-GA model using multi-channel 

feature fusion for tool life prediction has the smallest 

mean absolute error MAE, and the index performance 

ranking is CNN-SVM-GA < CNN-SVM < CNN < SVM 

< BP, which is reduced by 80.38%, 71.83%, 71.39%, and 

38.04%; the coefficient of determination R2 of the 

CNN-SVM-GA model proposed in this paper is 0.9985, 

which is closest to 1. The index performance is ranked as 

CNN-SVM-GA ＞ CNN-SVM ＞ CNN ＞ SVM ＞ 

BP, which is improved by 1.34%, 2.53%, 2.96%, and 

4.88%, respectively. These two results once again prove 

that using the CNN-SVM-GA model proposed in this 

paper for tool life prediction is more effective and can 

achieve more effective tool life prediction and health 

management in the milling process. 

6 Conclusion 

This paper completes the construction of a tool life 

sample dataset based on machine vision, feature 

extraction, and information fusion, and also proposes a 

CNN-SVM tool life prediction model based on genetic 

algorithm (GA) optimization. The model uses 

convolutional neural network (CNN) model as the feature 

fusion and support vector machine as (SVM) as the 

trainer for tool life regression prediction. And the 

prediction accuracy of the model is improved by using 

genetic algorithm (GA) to find the superiority of 

hyperparameters in the model. The results show that: 

(1) The mean absolute error MAE value of 0.7231, root 

mean square error RMSE value of 0.8292, and coefficient of 

determination R2 value of 0.9985 were obtained for tool life 

regression prediction using CNN-SVM-GA model. This 

indicates that the model can effectively predict the remaining 

life of the tool with good results. 

(2) The tool life prediction model is 

parameter-seeking by genetic algorithm (GA), and its 

decision coefficient R2 performance index reaches 0.99, 

which reduces the subjective influence of manual selection 

of parameters and avoids the blindness of setting 

parameters, thus improving the model prediction accuracy. 

(3) Compared with the BP model, CNN model, SVM 

model and CNN-SVM model, the mean absolute error 

MAE and root mean square error RMSE values of the 

CNN-SVM-GA model proposed in this paper are reduced, 

and the value of the coefficient of determination R2 is 

improved to be closest to 1. This indicates that the 

constructed tool life prediction model has stronger 

generalization ability, faster network fitting and tool wear 

prediction is more accurate. 

In the future, this CNN-SVM-GA tool wear 

prediction model can be widely used in various factories 

for CNC machining tool life management and other fields. 

By making real-time prediction of tool life, it can realize 

predictive maintenance of CNC machining tools and can 

perform intelligent tool change before tool wear is at a 

critical threshold, which is in line with the future 

development trend of intelligent control and network 

interactive production. 
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