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Abstract: 

A spindle fault diagnosis method based on CNN-SVM optimized by particle swarm algorithm (PSO) is proposed to address the 

problems of high failure rate of electric spindles of high precision CNC machine tools, while manual fault diagnosis is a tedious task 

and low efficiency. The model uses a convolutional neural network (CNN) model as a deep feature miner and a support vector machine 

(SVM) as a fault state classifier. Taking the electric spindle of a five-axis machining centre as the experimental research object, the 

model classifies and predicts four labelled states: normal state of the electric spindle, loose state of the rotating shaft and coupling, 

eccentric state of the motor air gap and damaged state of the bearing and rolling body, while introducing a particle swarm algorithm 

( PSO) is introduced to optimize the hyperparameters in the model to improve the prediction effect. The results show that the proposed 

hybrid PSO-CNN-SVM model is able to monitor and diagnose the electric spindle failure of a 5-axis machining centre with an 

accuracy of 99.33%. In comparison with the BP model, SVM model, CNN model and CNN-SVM model, the accuracy of the model 

increased by 10%, 6%, 4% and 2% respectively, which shows that the fault diagnosis model proposed in the paper can monitor the 

operation status of the electric spindle more effectively and diagnose the type of electric spindle fault, so as to improve the 

maintenance strategy. 
Keywords: five-axis machining centres; CNN-SVM; spindle vibration; fault diagnosis 

 

1 Introduction 

Five-axis machining centre is a high technology, 

high efficiency, low energy consumption in one of the 

high-precision machine tools, widely used in the complex 

space surface processing, its core key components failure 

of intelligent identification to enhance the overall level of 

equipment maintenance technology is of great 

significance. The electric spindle is directly driven by an 

electric motor instead of a pulley drive and gear drive, 

which can achieve high-speed and steady-state operation 

of the machine tool spindle, and is a key functional 

component of the five-axis machining centre, whose 

working condition directly affects the spindle rotation 

accuracy and product processing quality
[1]

. It is a key 

functional component of a five-axis machining centre. 

Therefore, effective monitoring and accurate diagnosis of 

spindle faults is essential. Monitoring means timely 

warning when a spindle fault occurs, and diagnosis means 

intelligent identification of the type of fault for accurate 

maintenance at a later stage. Fault detection and diagnosis 

models are used to monitor and mine the vibration signals 

of each fault in the spindle and to construct a non-linear 

correlation with the actual fault. In the early days, a large 

number of scholars used machine learning methods to 

build prediction models for intelligent maintenance of 

motorized spindle, such as BP neural networks 
[2]

,RBF 

neural networks
[3]

, Support vector machines (SVM)
[4]

 etc. 

Li Zhaolong 
[2]

 et al. collected temperature and axial 

thermal drift data of electric spindles at different 

rotational speeds, used fuzzy clustering and grey 

correlation analysis for feature extraction, and constructed 

a BAS-BP model to predict and compensate for the 

thermal errors of electric spindles, achieving better results. 

Shan Wentao 
[3] 

et al. proposed a block adaptive 

backstepping control method based on global RBF neural 

network. The backstepping control law and parameter 

update law were derived using Lyapunov theory to ensure 

the stability of the whole spindle system. C.K. 

Madhusudana 
[4] 

et al. collected vibration signals in the 

feed direction of the spindle in the healthy and faulty 

states of the milling cutter and used SVM models with 

different kernel functions to investigate and classify 
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selected features based on the discrete wavelet transform, 

and the results showed that spindle faults could be 

effectively diagnosed using this C- SVC model. Although 

the above-mentioned scholars have made some 

achievements using mechanical learning algorithms, the 

slow model fitting speed and low prediction accuracy 

have become urgent problems at this stage. 

With the application of sensor technology and the 

rise of deep learning algorithms, has become a new trend 

to use piezoelectric acceleration sensors to acquire 

electric spindle vibration signals and construct fault 

diagnosis models for monitoring by deep learning 

algorithms, such as recurrent neural networks (RNN) 
[5]

, 

long and short term memory networks (LSTM) 
[6]

 and 

Convolutional Neural Networks (CNN) 
[7] 

etc. These 

predictive models have more powerful feature learning 

and mapping capabilities and can automatically mine 

deeper features for prediction without a priori knowledge 

or the help of human experts. However, recurrent neural 

networks (RNN) are prone to gradient disappearance or 

gradient explosion when diagnosing spindle faults, and 

researchers have used Long and Short Term Memory 

Networks (LSTM) to predict spindle faults 
[8]

. 

Convolutional neural networks (CNNs) have been used 

for spindle fault monitoring and diagnosis in recent years 

because their convolution and pooling operations can 

improve the extraction of potential features in the hidden 

layer of the prediction model compared to LSTMs. 

Wen Long
[9]

 et al. proposed a CNN convolutional 

neural network for electric spindle bearing fault diagnosis, 

which can effectively perform fault monitoring, but there 

is still room to improve the accuracy of diagnosing 

specific fault types. This is due to the fact that when using 

a CNN diagnostic model to deal with functions with a 

high degree of non-linearity, the number of features 

output by the fully connected layer increases 

proportionally, reducing the generalisation capability of 

the model, which is not conducive to fault diagnosis of 

electric spindles. Support vector machines (SVMs), on 

the other hand, have an absolute advantage in dealing 

with non-linear data by using some kernel function to 

transform the input sample data from a low-dimensional 

space into a high-dimensional space, so that the originally 

non-linear data becomes linearly separable in the 

high-dimensional space
[10]

 It uses a kernel function to 

transform the input sample data from a low-dimensional 

space to a high-dimensional space, so that the originally 

non-linear data becomes linearly separable in the 

high-dimensional space. Therefore, the combination of 

SVM and CNN can make up for the shortcomings of the 

above CNN model. The essence is that CNN is used as a 

feature learner to explore the deep features of the input data, 

and SVM is used as a trainer to construct the optimal 

classification hyperplane for fault classification prediction. 

CNN-SVM is a multi-category diagnostic model 

proposed by combining convolutional neural network 

(CNN) and support vector machine (SVM) methods. Its 

model performance depends on the selection of model 

parameters, which include penalty parameters ρ  and 

kernel function width g, etc., and it is crucial to select the 

optimal parameter pairing to further improve the model 

performance. The current more common hyperparameter 

optimisation methods are random optimisation search 
[11]

 , 

gradient-based optimisation
[12]

, genetic algorithm 

optimisation
[13]

, Particle swarm optimization
[14]

et al. The 

PSO algorithm can perform global optimization with 

fewer parameters, and its powerful search performance 

and individual optimization capability can accelerate the 

convergence speed of the model, so it has been widely 

used and studied by scholars in recent years 
[15] 

.This is 

why it has been widely studied in recent years. 

In this paper, a hybrid CNN-SVM model based on 

particle swarm algorithm (PSO) optimisation is proposed. 

Firstly, the fully connected layer of the CNN model is 

replaced by a global average pooling layer to reduce the 

dimensionality of the output features and improve the 

generalisation capability of the model; secondly, the 

Softmax function of the CNN model is replaced by a 

support vector machine SVM classifier to complete the 

fault diagnosis of the electric spindle; finally, the 

hyperparameters in the SVM model are optimised using 

the PSO algorithm to derive the optimal solution to 

further improve the Finally, the PSO algorithm is used to 

optimise the hyperparameters in the SVM model and 

derive the optimal solution to further improve the fault 

diagnosis accuracy of electric spindles. 

2 Construction of a CNN-SVM-PSO fault 

diagnosis method 

To address the shortcomings of the CNN diagnosis 

model, this paper proposes a fault diagnosis model based 

on a CNN-SVM optimised by a particle swarm algorithm 

to identify the types of faults in the electric spindle system 

of a 5-axis machining centre. The improvements are:  

(1) The sample feature matrix is pre-processed using 

batch normalisation techniques and then input into the CNN 

model, which reduces the complexity of the model and 

improves the convergence speed of the network with its 

unique structure of local connectivity and weight sharing. 

(2) The fully connected layer of the CNN model is 

replaced by a global average pooling layer, and the 

features output after the convolution and pooling 

operations are reduced in dimensionality, which reduces 

the model parameters and lowers the training time of the 

SVM model. 

(3) The SVM model is suitable for classification 

tasks dealing with problems with high non-linearity and 

makes up for the shortcomings of the CNN model, so the 

SVM model is used instead of the Softmax classifier in 

the CNN to classify and predict the electric spindle fault 

types, thus improving the model generalisation capability. 

(4) Using the powerful search and global 

optimization-seeking capabilities of the PSO algorithm, 

the penalty parameter in the SVM modelρ and the two 
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parameters of kernel function width g are iteratively 

optimized to improve the accuracy of electric spindle 

fault diagnosis. The CNN-SVM-PSO fault diagnosis 

model is shown in Figure 1. 

 

Figure 1  CNN-SVM-PSO fault diagnosis model 

2.1 Acquisition of electric spindle vibration signals 

During the operation of a five-axis machining centre, 

the electric spindle system will generate violent vibrations 

when problems occur in the core components such as the 

rotating shaft, motor and bearings, which are manifested 

by the loose and unbalanced phenomenon of the rotating 

shaft and coupling, the eccentric phenomenon of the air 

gap of the motor, as well as the damage failure of the 

bearings and rolling bodies. By monitoring the vibration 

of the machine tool spindle system when the above core 

components are abnormal, it is found that the frequency 

range of the vibration signals of various faults are slightly 

different, as shown in Table 1, so the spindle fault can be 

diagnosed by extracting the features of each fault 

vibration signal and finding the correlation between the 

sample features and the actual fault
[16].

The sample 

features can then be correlated with the actual fault to 

diagnose the spindle fault. 

Table 1  Frequency range of core component failures 

Electric spindles 

Type of fault 
Frequency range Type of vibration 

Unbalanced and loose 

rotating shafts and couplings 

5 times 

Within working 

frequency 

Low frequency 

vibration 

Motor air gap eccentricity 

failure 

2x Power 

frequency 

Medium Frequency 

Vibration 

Bearings and rolling elements 

Injuries 
＞1KHz 

High frequency 

vibration 

The vibration information generated by the electric 

spindle system of the five-axis machining centre due to 

the above faults will be reflected in different ways, such 

as irregular fluctuations of the spindle motor current, the 

vibration of the outer casing of the spindle and the noise 

generated by the electric spindle system. The experiment 

is to use the 356A15 three-axis vibration acceleration 

sensor manufactured by PCB to monitor and collect the 

vibration signal generated by the outer casing of the 

spindle in real time under the high-speed rotating state of 

the electric spindle, the Measuring system models is 

shown in Figure 2, the Experimental equipment model 

parameters is shown in Table 2. 

 

Figure 2  Measuring system models 

Table 2  Experimental equipment model parameters 

Serial 

number 

Experimental 

equipment 
Model parameters 

1 
Five-axis machining 

centres 
SK5L-70100 i5M8 

2 Acceleration sensors 
PCB, 

Type 356A15 

3 
Data Acquisition 

Cards 

NI-DAQ, 

50HZ 

4 Output Connector BNC interface 

In this paper, the raw vibration signals of the electric 

spindle system are collected in real time according to the 

above scheme. A total of four tag states are collected: 

normal (set as tag 1), spindle fault (set as tag 2), motor 

fault (set as tag 3) and bearing fault (set as tag 4). The 

number of samples collected for each of the four tag 

states is 100, giving a total of 400 data. As the raw signal 

data set collected contains 3 channels of X-axis, Y-axis 

and Z-axis vibration signals, a raw signal matrix of 400 x 

3 is formed. 

2.2 Electric spindle fault feature extraction 

The instability of the five-axis machining centre 

electric spindle system at the moment of start/stop can 

interfere with the signal feature extraction, so the original 

signal needs to be processed for noise reduction. This 

experiment each acquisition signal data volume is about 

200000 or more, so extract each acquisition signal in the 

label for 50001 ～ 100000 data for research, in order to 

avoid the interference of the noise signal, to the normal 

state of the data set as an example, its noise reduction 

signal results are shown in Figure 3. 

 

Figure 3  Spindle vibration signal data after noise reduction 
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After noise reduction, the original vibration signal is 

extracted in the time domain, frequency domain and 

time-frequency domain. 13 time-domain features are 

extracted in total, including mean value, variance, cliff 

index, peak factor, etc.; 5 frequency-domain features are 

extracted, including frequency-domain amplitude mean 

value, mean square frequency, variance frequency, etc.; 

the time-frequency domain features are extracted mainly 

by using wavelet packet analysis to subdivide the original 

signal into different frequency bands, and the energy 

value of each frequency band is the extracted 

time-frequency domain features. The energy value of each 

frequency band corresponds to the type of electric spindle 

fault, so the energy value of the frequency band is the 

extracted time-frequency domain features, and the energy 

value of the frequency band is calculated by the formula: 

 𝐸𝑛 (𝑥(𝑡)) =
1

2−𝑘𝑁 − 1
∑ (𝑥𝑘,𝑚(𝑖))2                (1)

2𝑘−1

𝑚−0

 

where En denotes the total energy of the original 

signal, j denotes the number of layers of wavelet packet 

decomposition, andxk,m(i) denotes the number of layers 

in the subspace Uj−k
2k+m  of the signal x2k+m  of the 

decomposed signal. In this experiment, the number of 

layers of wavelet packet decomposition of the original 

signal is set to 3, which are all done by the db5 wavelet 

base. The frequency domain is divided into 8 frequency 

bands, as shown in Figure 4, so that 8 time-frequency 

domain features are extracted. Therefore, 26 features can be 

extracted for each channel signal. The features of all 

channels are fused to produce 78 eigenvalues and the matrix 

is reorganised to produce a 400 x 78 eigenmatrix, which is 

the input to the electric spindle fault diagnosis model. 

 

Figure 4  Frequency bands for wavelet packet 

decomposition 

2.3 Fault diagnosis principle of CNN-SVM-PSO model 

Firstly, the 400 x 78 sample feature matrix is 

reorganised using the batch normalisation technique; 

secondly, the sample data is input into the CNN model 

and passed into the global average pooling layer for 

feature dimensionality reduction after two successive 

convolution and pooling operations; finally, the reduced 

dimensional feature vector is passed into the SVM model 

optimised by the PSO algorithm for electric spindle fault 

diagnosis. The specific fault diagnosis principle is as follows:  

According to the above, the 400×78 sample feature 

matrix was derived from the feature extraction of the 

original vibration signals of the four labels in the time 

domain, frequency domain and time-frequency domain, 

and the above feature matrix was batch normalized to 

avoid the occurrence of overfitting due to gradient 

dispersion, and the processing formula for batch 

normalization was 

𝑋𝑛 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
                                  (2) 

where X  denotes the sample for each feature, 

andXmin  denotes the minimum value of each feature, 

andXmax denotes the maximum value of each feature. 

The sample information is indirectly characterized 

by the weight value of each layer derived from the 

convolution operation, the higher the layer, the more 

detailed the local features are extracted, and the spatial 

continuity of the sample is maintained
[17]

 .The 

convolution operation is given by 

𝑋𝑖
𝑘 = ∑ 𝑊𝑖

𝑘𝑗
⨂𝑋𝑖−1

𝑗
+ 𝑏𝑖

𝑘                        (3)𝑛
𝑗=1   

where Xi
k  denotes the feature matrix of the kth 

neuron at the output of the ith layer, and𝑊𝑖
𝑘𝑗

 denotes the 

weight value of the kth neuron at layer i, and⨂ denotes 

the convolution operator, and𝑋𝑖−1
𝑗

 denotes the feature 

matrix of the jth neuron at the output of layer i-1, andbi
k 

is the bias coefficient of the kth neuron in layer i. 

In order to improve the fault diagnosis performance of 

the prediction model, the CNN model uses ReLU function 

for non-linear activation, which has good non-saturation 

characteristics and avoids the gradient disappearance 

phenomenon. The activation function is as follows: 

𝑉𝑖
𝑘 = 𝑅𝑒𝑙𝑢(𝑋𝑖

𝑘) = {
0, 𝑥𝑖

𝑘 < 0

𝑥𝑖
𝑘 , 𝑥𝑖

𝑘＞0
                     (4) 

Where 𝑥𝑖
𝑘  is the value of the𝑋𝑖

𝑘  the respective 

eigenvalues in the feature matrix. 

The pooling type is chosen to be maximum pooling, 

which preserves the original features and reduces the 

parameters of network training, improving the robustness of 

the extracted features. The maximum pooling formula is: 

𝐶𝑖
𝑘(𝑠, 𝑡) = 𝑀𝑎𝑥

1+(𝑠−1)𝑄≤𝑑≤𝑠𝑄
1+(𝑡−1)𝑃≤ℎ≤𝑡𝑃

{𝑉𝑖
𝑘(𝑑, )}                 (5) 

where𝑉𝑖
𝑘(𝑑, ) is the eigenvalue of column h of row 

d of the ith eigenmatrix input to the pooling layer, 

and𝐶𝑖
𝑘(𝑠, 𝑡) is the eigenvalue of the sth row t column of 

the ith feature matrix obtained after pooling, and P and Q 

are the length and width of the pooled region, respectively. 
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The feature matrices of dimension S × T, which are 

derived from each row of the 400 × 78 sample feature 

matrix after two convolution and pooling operations, are 

fed into the global average pooling layer. The 

dimensionality of the pooling kernel of the global average 

pooling layer is kept consistent with the dimensionality of 

the feature matrix, and the n feature matrices are 

dimensionalized to output a feature vector Xr = {x1 , 

x2 , ... , xi , ... , xn , }, where xi is given by the formula 

𝑥𝑖 =
1

𝑆𝑇
∑∑𝐶𝑖

𝑘(𝑠, 𝑡)                               

𝑇

𝑡=1

(6)

𝑆

𝑠=1

 

The feature vector output from the global average 

pooling layer is used as input to the SVM support vector 

machine model. The greatest advantage of the SVM 

algorithm is that the number of features in a dataset has 

essentially no effect on its model complexity, making it 

particularly suitable for classification tasks with relatively 

large datasets of features, and the mathematical model of 

the SVM is  

{
 

 𝑚𝑖𝑛 
1

2
‖𝑤‖ + 𝜌∑𝜉𝑟

𝐿

𝑟=1

𝑠. 𝑡. 𝑦𝑟(𝑤𝑋𝑟 + 𝑏) + 𝜉𝑟 ≥ 1, 𝑟 = 1,2，⋯，𝐿

         (7) 

where w is the normal vector to the hyperplane, 

andρ is the penalty parameter, the ξr is the relaxation 

factor, b is the offset coefficient, andXr is the feature 

vector of the rth sample, the yr is the fault class, L is the 

total number of feature samples, and the total number of 

samples in this paper is 400. 

The model in Eq. (7) is mostly used to deal with 

linearly divisible sample characteristics data, but the 

electric spindle fault sample data is linearly indivisible, so 

it is necessary to introduce the kernel function to 

up-dimension each labeled sample data. In this paper, the 

Gaussian radial basis kernel function is used to transform 

the non-linear data of each labeled state into linear data in 

high dimensional space to make the analysis possible, and 

then the optimal classification hyperplane is constructed 

based on the principle of maximizing the classification 

interval to complete the fault diagnosis task, and its 

Gaussian radial basis kernel function formula is 

𝐾(𝑋) = 𝑠𝑔𝑛 (∑𝑎𝑟
∗

𝐿

𝑟=1

𝑦𝑟𝑒𝑥𝑝 (−
‖𝑋𝑟 − 𝑋‖

2

2𝑔2
) + 𝜃∗)    (8) 

where sgn is the sign function, ar
∗ is the Lagrangian 

multiplier, g is the kernel function width, and X is the 

sample label data, and θ∗ is the configuration factor. 

The five-axis machining centre spindle fault 

diagnosis has a total of four label states, in essence a 

multi-classification problem. In the fault diagnosis of the 

sample, each classifier scores the four label states and the 

label with the highest score is the final result of the fault 

diagnosis. The penalty parameterρ and kernel function 

width g directly affect the training speed and prediction 

accuracy of the model, so how to find the optimal ρ , g 

parameter pairing is the key to SVM model classification 

prediction 
[18]

. This paper uses the PSO algorithm to 

perform the SVM classification prediction. In this paper, 

the PSO algorithm is used to optimise the 

hyperparameters in the SVM model to derive the optimal 

solution, and its PSO algorithm optimisation search 

process is shown in Figure 5. 

 

Figure 5  PSO algorithm optimisation process 

2.4 Fault diagnosis process with CNN-SVM-PSO model 

The process of electric spindle fault diagnosis based 

on CNN-SVM-PSO model mainly includes the following 

six stages: sample feature extraction, division of data set, 

training CNN model, training SVM model, optimization 

of model parameters and fault type diagnosis. The basic 

process is shown in Figure 6:  

(1) Sample feature extraction: The original signals of 

the 3 channels related to the electric spindle vibration are 

extracted in the time domain, frequency domain and 

time-frequency domain respectively to form a sample 

feature matrix. 

(2) Division of data set: The above sample matrix is 

normalized, the processed feature parameters are the 

model input, the four label states of the electric spindle 

are the model output, and the training data set and the test 

data set are randomly divided, with the ratio of training 

data set to test data set being 5:3. 
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Figure 6  CNN-SVM-PSO fault diagnosis flowchart 

(3) Training the CNN model: build a convolutional 

neural network and train it using the training and test sets 

from step 2. After two convolutional and pooling 

operations reduce the training time of the SVM by 

globally averaging one feature vector output from the 

pooling layer to form a new training and test set; 

(4) Training the SVM model: train the SVM model 

with the training set formed in step 3, select the Gaussian 

radial basis kernel function as the basis function of the 

SVM classifier, initialize the penalty parametersρ and 

kernel function width g.  

(5) Model parameter optimization: Iterative 

optimization of the hyperparameters of the SVM model 

based on the training data set using the PSO algorithm to 

find the optimal c and g parameter pairing to improve the 

training speed and prediction accuracy of the model 

(6) Fault type diagnosis: The test set formed with 

step 3 is input to the trained SVM model to identify the 

data fault type and provide a reference for electric spindle 

fault repair and troubleshooting. 

3 Experimental analysis of electric spindle 

fault diagnosis 

3.1 Setting of diagnostic model parameters 

In this experiment, a 400×78 sample feature matrix 

was generated after feature extraction, corresponding to 

four labeled states, namely normal state (label 1), spindle 

fault (label 2), motor fault (label 3) and bearing fault 

(label 4). The CNN-SVM-PSO model was constructed by 

randomly disrupting the feature matrix and then batch 

normalising it to construct a training set and a test set, of 

which the number of training sets was 250 and the 

number of test sets was 150.ρ and the kernel function 

width g, both of which were set between 0 and 5, were 

selected as the target of the optimization process. To 

avoid interference from other factors, the number of 

particle swarm individuals in the PSO algorithm was set 

to 15 and the maximum number of iterations was set to 

150, with the specific parameters shown in Table 3. 

Fifteen optimisation operations were carried out 

according to the parameters in Table 3, and the average 

value was taken as the final result, where the penalty 

parameterρ was 0.401 and the kernel function width g 

was 1.215. The optimizedρ , g parameters were migrated 

to the CNN-SVM model to complete the four label fault 

diagnosis. 

Table 3  Initial parameter settings for the PSO algorithm 

PSO algorithm parameters Parameter values 

Number of individuals in the particle population 15 

Maximum number of iterations 150 

Acceleration factors c1, c2 1.3, 1.5 

Inertia factor 0.5 

Particle vector dimension 2 

3.2 Selection of diagnostic model evaluation indicators 

In order to quantify the results of electric spindle 

fault diagnosis, this paper selects Precision, Accuracy, 

Recall and F1-score values as the evaluation 

indexes
[19]

The formulae for the calculation of Precision, 

Accuracy, Recall and F1-score are as follows 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                (9) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                (10) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                  (11) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
                  (12) 

In the above equation, the values of TP, TN, FP and 

FN can all be found in the confusion matrix, which is 

shown in Table 4 for the dichotomy example. 

Table 4  Confusion matrix 

 
True value 

Normal Fault 

Predicted value 
Normal TP FP 

Fault FN TN 
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3.3 Electric spindle fault diagnosis results 

This experiment takes the electric spindle of a five-axis 

machining centre as the research object, and uses the 

acceleration sensor to detect the vibration signals of four label 

states in real time, and forms the sample data after feature 

extraction, normalised and input to the CNN-SVM-PSO fault 

diagnosis model for fault identification, and the fault 

identification results of the training set obtained are shown in 

Figure 7, and it can be found that only 1 sample out of 250 

training samples, The fault identification results of the test 

samples are shown in Figure 8, and it can be found that only 1 

sample out of 150 test samples was diagnosed incorrectly, 

with an accuracy rate of 99.33%. The results show that the 

CNN-SVM-PSO model has a good effect in the diagnosis of 

electric spindle faults. 

 

Figure 7  Training set spindle fault prediction results 

 

Figure 8  Test set spindle failure prediction results 

The confusion matrix of the CNN-SVM-PSO model 

electric spindle fault diagnosis test set is shown in Figure 

9. It can be seen that the test set contains 36 samples of 

normal state (label 1), spindle fault (label 2) 40, motor 

fault (label 3) 32 and bearing fault (label 4) 42, total 

150 samples. In the diagnosis of the spindle fault (tag 

2), one sample was incorrectly classified as a motor 

fault (tag 3), with an accuracy rate of 97.5%; no errors 

were found in the diagnosis of normal condition (tag 1), 

motor fault (tag 3) and bearing fault (tag 4), with an 

accuracy rate of 100%. 

The evaluation index of electric spindle fault 

diagnosis can be calculated through the confusion matrix, 

and the results of the evaluation index of its four state 

labels are shown in Table 5. For the accuracy rate index, it 

can be seen that the accuracy rate of the spindle fault is 

the lowest, but it also reaches 97.5%, and all other states 

can reach 100%, which achieves a better result; for the 

correct rate index, it can be seen that the accuracy rate of 

all three wear states is 99.33%, which is consistent with 

the previous analysis; for the recall rate index, it can be 

seen that only the recall rate of the motor fault (label 3) 

does not reach For the F1 value metric, it can be seen that 

the minimum value of F1 for the four fault types is 0.985, 

which is close to 1. These four results further validate the 

superiority of the CNN-SVM-PSO model in the diagnosis 

of electric spindle faults. 

 

Figure 9  Fault diagnosis confusion matrix 

Table 5  Results of the four fault diagnosis evaluations 

Label Classification Precision Accuracy Recall rate F1 value 

1 100% 99.33% 100% 1 

2 97.5% 99.33% 100% 0.987 

3 100% 99.33% 97% 0.985 

4 100% 99.33% 100% 1 

In order to further verify the identification effect of 

the CNN-SVM-PSO electric spindle fault diagnosis 

model, the prediction effect was compared with other 

traditional fault diagnosis models in the past, such as BP 

neural network, CNN model, SVM model and CNN-SVM 

model, and the prediction results of these four traditional 

electric spindle fault diagnosis models are shown in Figure 

10. From Fig. 8 and Fig. 10, it can be seen that the 

prediction effects of the five electric spindle fault diagnosis 

models are ranked as CNN-SVM-PSO ＞ CNN-SVM ＞ 

CNN ＞ SVM ＞ BP. It can thus be seen that the hybrid 

CNN-SVM model based on the optimization of PSO 

algorithm proposed in this paper has obvious advantages in 

electric spindle fault diagnosis, which is due to the ability 

in the CNN-SVM-PSO model to deep mining of data 

hidden layer features with high nonlinearity and 

comprehensive feature extraction, and the PSO algorithm is 

able to perform a deep mining of the penalty parameter in 

the SVM support vector machineρ The PSO algorithm is 

able to find the optimal pairing of two hyperparameters in 

the SVM support vector machine and the kernel function 

width g, which avoids the blindness of setting parameters 

and thus improves the accuracy of the prediction model. It 

is calculated that the CNN-SVM model optimized based on 
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the PSO algorithm improves the accuracy by 2% over the 

traditional CNN-SVM model. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 10  Prediction results of the four traditional models 

(a) BP model. (b) CNN model. (c) SVM model. (d) CNN-SVM model 

Table 6 shows the performance comparison results 

of the five electric spindle fault diagnosis models. The 

number of diagnostic error samples of BP model, SVM 

model, CNN model and CNN-SVM model are 16, 10, 7 

and 4 respectively, and their accuracy rates are 89.33%, 

93.33%, 95.33% and 97.33% respectively. In contrast, the 

CNN-SVM-PSO model proposed in this paper diagnosed 

only one wrong sample and the accuracy rate was as high 

as 99.33%, which improved the accuracy index by 10%, 

6%, 4% and 2% respectively compared with the above 

four traditional models. This shows that under the 

conditions of consistent samples and the same number of 

samples, the prediction accuracy of the hybrid CNN-SVM 

model based on the optimised PSO algorithm for electric 

spindle fault diagnosis is significantly higher than the 

other models, and its generalisation ability is stronger and 

the network fitting speed is faster, which indirectly 

indicates that using the CNN-SVM-PSO model for 

electric spindle fault diagnosis is more accurate and can 

provide a reference for electric spindle fault repair and 

troubleshooting. This indirectly indicates that the 

CNN-SVM-PSO model is more accurate for electric 

spindle fault diagnosis and can provide a reference for 

electric spindle fault repair and troubleshooting. 

Table 6  Performance comparison results of the five 

diagnostic models 

Algorithm 

Number of misidentified samples 

Accuracy Normal 

Status 

Bearing 

failures 

Spindle 

failure 

Motor 

failure 

BP Neural 

Network 
1 5 9 1 89% 

SVM Algorithms 0 2 3 5 93% 

CNN Algorithms 0 2 3 2 95% 

CNN-SVM 

algorithm 
1 1 2 0 97% 

CNN-SVM-PSO 

algorithm 
0 1 0 0 99% 

4 Conclusion 

In this paper, a CNN-SVM fault diagnosis model 

based on PSO algorithm optimisation is proposed to 

classify and predict four labeled states: normal state, 

spindle fault, motor fault and bearing fault of an electric 

spindle, taking the electric spindle of a five-axis 

machining centre as the experimental object. The model 

uses a convolutional neural network (CNN) model as a 

deep feature miner and a support vector machine (SVM) 

as a fault state classifier to complete the diagnosis of 

electric spindle fault types. In order to improve the 

prediction accuracy of the model, the powerful search 

capability of the particle swarm algorithm (PSO) is used 

to search for the superparameters in the model. The 

results show that: 

(1) The best hyperparameter pairing for the 

CNN-SVM electric spindle fault diagnosis model was 

found by the PSO algorithm, where the penalty 

parameterρ is 0.401 and the kernel function width g is 
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1.215, which reduces the subjective influence of manual 

parameter selection and avoids the blindness of setting 

parameters, thus improving the diagnostic accuracy. 

(2) The CNN-SVM-PSO model can effectively 

monitor and diagnose the common types of faults in 

electric spindle systems, and its diagnostic accuracy 

reaches 99.33%. 

(3) Under the same conditions, the diagnostic 

performance of the CNN-SVM-PSO model proposed in 

this paper was compared with the BP model, CNN model, 

SVM model and CNN-SVM model, and the results 

showed that the model constructed in the paper has 

obvious advantages in electric spindle fault diagnosis, and 

its accuracy indexes were improved by 10%, 6%, 4% and 

2% respectively. 

In the future, this CNN-SVM-PSO electric spindle 

fault diagnosis model can be widely used in the fields of 

spindle fault diagnosis and intelligent operation and 

maintenance of CNC machine tools in various factories. 

By monitoring the vibration signal of the electric spindle in 

real time, it is of practical significance to achieve early 

warning and display the type of fault when the vibration signal 

is abnormal, providing reference advice to maintenance 

personnel and improving maintenance efficiency. 
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