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Abstract: 

In order to achieve predictive maintenance of CNC machining tools and to be able to change tools intelligently before tool wear is at a 

critical threshold, a CNN-LSTM tool wear prediction model based on particle swarm algorithm (PSO) optimization with multi-channel 

feature fusion is proposed. Firstly, the raw signals of seven channels of the machining process are collected using sensor technology 

and processed for noise reduction; secondly, the time-domain, frequency-domain and time-frequency-domain features of each channel 

signal are extracted, and a sample data set of spatio-temporal correlation of traffic flow is constructed by dimensionality reduction 

processing and information fusion of the above features; finally, the data set is input to the CNN-LSTM-PSO model for training and 

testing. The results show that the CNN-LSTM-PSO model can effectively predict tool wear with an average absolute error MAE value 

of 0.5848, a root mean square error RMSE value of 0.7281, and a coefficient of determination R2 value of 0.9964; and compared with 

the BP model, CNN model, LSTM model and CNN-LSTM model, its tool wear prediction accuracy improved by 7.56%, 2.60%, 

2.98%, and 1.63%, respectively. 
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1 Introduction 

The severity of tool wear during CNC machining 

plays a decisive role in the machining accuracy of 

products, and serious tool wear can reduce product quality, 

lead to increased scrap rate, and even lead to machine 

accidents. Therefore, in recent years, tool wear prediction 

has become a fundamental and prerequisite work in the 

field of tool life management and intelligent tool change. 

Early on, experts and scholars have made some progress 

by exploring the tool wear mechanism and combining 

Taylor's empirical formula for tool life prediction, the  

Andis Ābele et al. confirmed the validity of Taylor's 

empirical formula for predicting tool life and determined 

the coefficients of Taylor's formula, and finally obtained 

the formula for predicting the length of the cutting 

trajectory at the critical wear stage of the tool based on 

the cutting speed
[1]

 . However, the Taylor's empirical 

formula only yields a fixed value of tool life, which does 

not correspond to the actual application of the tool, 

because the machining parameters are variable and the 

manufacturing environment is complex, which leads to 

the impossibility of the remaining tool life in the form of 

a fixed value. 

Based on the above problems, researchers have 

started to use mechanical learning techniques to predict 

tool life. Commonly used mechanical learning prediction 

models are: random forest 
[2]

, BP neural network 
[3]

, 

support vector machine (SVM) 
[4]

, etc. Wei Weihua 
[5] 

et 

al. optimized BP neural network by genetic algorithm, so 

that the model's optimization and learning ability can be 

improved, which can effectively identify tool wear. Sarat 

Babu Mulpur 
[6]

 et al. used OGM-SVM model for 

real-time prediction of rear tool face wear based on 

extracted multi-sensor heterogeneous data features and 

also achieved good prediction results, but the prediction 

efficiency and accuracy were not high. 

In the automated production process, a high accuracy 

life prediction model can be very effective in predicting 

the future tool wear level, which is important to study the 

tool wear at a critical threshold to enable intelligent tool 

change. Therefore, a large number of experts and scholars 

have applied deep learning theory in tool life prediction, 

such as recurrent neural networks (RNN) 
[7]

, long and 

short-term memory networks (LSTM) 
[8] 

and 

convolutional neural networks (CNN) 
[9]

, whose 

prediction effect is significantly higher than mechanical 

learning techniques. Recently, work on tool life prediction 

based on long and short term memory networks (LSTM) 
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has been carried out gradually. Ma Kaile 
[10]

et al. analyzed 

the singularity of the original vibration signal to eliminate 

the effect of milling path and constructed a stacked 

LSTM model for tool wear prediction, and compared with 

models such as WOA-SVR, it was found that the method 

improved the accuracy of tool wear prediction. Although 

the LSTM network can perfectly process the timing 

information of tool wear, it is difficult to extract the deep 

features hidden in the samples, which leads to the 

incomplete extraction of tool wear prediction features and 

there is still room for improvement. 

Convolutional neural networks (CNNs) have strong 

feature extraction capability and low computational 

complexity compared with long and short-term memory 

networks (LSTMs), and can tap deep features hidden in 

samples. Lim Meng Lip 
[11] 

et al. cropped the surface 

profile images of machined parts and input them into 

CNN networks for tool wear prediction, and the results 

showed that the CNN model can meet the tool wear 

prediction requirements with an accuracy of 98.9 % 

accuracy. Although these methods have been successful in 

predicting tool wear, it is still challenging to fully reveal 

the effective features present in the monitored signals due 

to the defects in the network structure 
[12]

. 

As we all know, when the tool wear reaches the 

sharp wear stage, the system alerts for intelligent tool 

change, which can improve product machining accuracy 

and reduce tool management costs. The rule of tool wear 

is faster in the early stage, slower in the middle stage, and 

the fastest and most drastic in the late stage. It can be seen 

that using only one model for tool life prediction will lead 

to a single extracted feature, which is prone to overfitting. 

Therefore, combining convolutional neural network 

(CNN) and long and short-term memory network (LSTM) 

has become an inevitable trend, using CNN model to 

extract potential deep features in space and capturing time 

series information in time by LSTM model, so that the 

temporal and spatial features of the data can be fully 

utilized to make up for the shortcomings of the above 

single prediction model. 

In order to further improve the prediction effect of 

the model, the hyperparameters in the prediction model 

must be optimized. The more common hyperparameter 

optimization methods include random optimization 
[13]

, 

gradient-based optimization 
[14]

, genetic algorithm 

optimization 
[15]

, particle swarm algorithm optimization 
[16]

, 

etc. The particle swarm algorithm (PSO) can perform global 

optimization with fewer parameters, and its powerful search 

performance and individual optimization capability can 

speed up the convergence of the model, so it has been widely 

used and studied by scholars in recent years 
[17]

. 

Therefore, this paper proposes a CNN-LSTM tool wear 

prediction model with multi-channel feature fusion based on 

machine vision, feature extraction, deep learning and 

hyperparameter optimization, constructs a spatio-temporal 

correlation feature matrix of traffic flow so that the temporal 

and spatial features of the monitored signal can be fully 

utilized, and optimizes the hyperparameters in the prediction 

model using particle swarm algorithm (PSO), so as to 

improve the tool wear prediction accuracy. The research of 

this method will propose a new theory and method for tool 

wear remaining life prediction, and lay a theoretical 

foundation and scientific basis for improving the 

development of China's machine tool manufacturing 

industry and intelligent tool changing field. 

2 Construction of CNN-LSTM-PSO prediction 

model 

In order to improve the accuracy and accuracy of the 

prediction model of tool remaining life, a multi-channel 

feature fusion CNN-LSTM tool wear prediction model 

based on particle optimization was proposed in this paper. 

The output tool wear values were monitored by the 

vibration signals of three channels, the cutting force 

signals of three channels and the acoustic emission 

signals of one channel. Thus, predictive maintenance of 

NC machining tools can be realized, and tools can be 

changed intelligently before tool wear is in the critical 

threshold. The improvements are as follows:  

(1) The characteristics of vibration signals, cutting 

force signals and acoustic emission signals were extracted 

by batch normalization and dimensionality reduction 

processing, which improved the generalization ability of 

the model, avoided overfitting phenomenon and improved 

the convergence speed of the model.  

(2) CNN model reduces network complexity with its 

unique structure of local connection and weight sharing, 

and the spatial continuity of sample features is maintained 

after convolution and pooling operations.  

(3) Long term memory network (LSTM) is a further 

optimization of the traditional RNN network, which can 

process longer time series data while avoiding the 

phenomenon of gradient vanishing or gradient explosion.  

(4) Using the powerful search and global 

optimization ability of PSO algorithm, the two parameters of 

the initial learning rate parameter and the number of hidden 

layer units in LSTM network were iteratively optimized, 

which reduced the subjective influence of manual selection 

parameters, and thus improved the prediction accuracy of 

tool wear model. The CNN-LSTM-PSO tool wear prediction 

model is shown in Figure 1. 

 

Figure 1  CNN-LSTM-PSO tool wear prediction model 

2.1 Convolutional Neural Network (CNN) 

Convolutional neural network (CNN) 
[18]

 is a kind of 
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neural network, which is a typical representative of deep 

learning and has obvious advantages for processing 

spatial data. The most important difference between CNN 

convolutional neural network and other traditional neural 

networks is the convolution operation and pooling 

operation, which can realize local connection and weight 

sharing. Therefore, the pre-processing part of this paper 

uses the CNN model to extract the spatial features of the 

315×47 sample feature matrix, and its output is a 

one-dimensional spatial sequence matrix, which lays the 

foundation for the prediction of tool wear using the 

LSTM model. The principle is as follows: 

(1) The sample feature matrix after batch 

normalization and dimensionality reduction is input to the 

CNN convolutional neural network for convolutional 

operation. The sample information is indirectly 

characterized by the local features of the sample through 

the weight value of each layer derived from the 

convolutional operation, and the higher the layer is, the 

more detailed the local features are extracted, and also the 

spatial continuity of the sample is maintained, and its 

convolutional operation is shown in equation (1): 

Xi
k =∑Wi

kj
⨂Xi−1

j
+ bi

k                            (1)

n

j=1

 

Where Xi
k  denotes the feature matrix of the kth 

neuron at the output of the ith layer, and Wi
kj

 denotes the 

weight value of the kth neuron in the ith layer, and ⨂ 

denotes the convolution operator, and Xi−1
j

 denotes the 

feature matrix of the jth neuron at the output of layer i-1, 

and bi
k is the bias coefficient of the kth neuron in layer i. 

(2) In order to improve the prediction accuracy of 

the tool wear life model, the CNN network uses ReLU 

function for nonlinear activation, which has good 

non-saturation characteristics to avoid the gradient 

disappearance phenomenon. The activation function is 

shown in equation (2): 

Vi
k = Relu(Xi

k) = {
0, xi

k < 0

xi
k, xi

k＞0
                       (2) 

where xi
k is theXi

k each eigenvalue in the feature 

matrix. 

(3) Each tool wear feature data is input to the 

pooling layer after convolution operation, and the pooling 

type is selected as maximum pooling, which can retain 

the original features and reduce the parameters of network 

training, and improve the robustness of the extracted 

features. The maximum pooling is shown in equation (3): 

Ci
k(s, t) = Max

1+(s−1)Q≤d≤sQ

1+(t−1)P≤h≤tP

{Vi
k(d, h)}                (3) 

where Vi
k(d, h) is the eigenvalue of column h of 

row d of the ith feature matrix input to the pooling layer, 

and Ci
k(s, t) is the eigenvalue of the sth row t column of 

the ith feature matrix obtained after pooling, and P and Q 

are the length and width of the pooled region, 

respectively. 

(4) The n feature matrices of dimension S × T, which 

are derived from each row of the 315 × 47 sample feature 

matrix after two convolution and pooling operations, are 

input to the global average pooling layer. The 

dimensionality of the pooling kernel of the global average 

pooling layer is kept consistent with the dimensionality of 

the feature matrix, and the n feature matrices are 

dimensionality reduced to reduce the covariance of the 

sample features and avoid the influence of redundant 

features, thus reducing the training time of the LSTM long 

and short term memory network, so the whole CNN model 

finally outputs a feature vector Xt = {x1 , x2 , ... , xi , ... , xj , } 

where xi is calculated as shown in equation (4): 

xi =
1

ST
∑∑Ci

k(s, t)                          

T

t=1

(4)

S

s=1

 

2.2 Long and short-term memory neural network (LSTM) 

CNN convolutional neural networks are capable of 

mining local spatial features related to tool wear, but it is 

difficult to extract longer time series data. Recurrent 

neural networks (RNN) can perform temporal processing 

of tool wear data, but it is difficult to process for longer 

time series data, and gradient disappearance or gradient 

explosion occurs during operation. It is usually used to 

solve this phenomenon using long and short term memory 

networks (LSTM) or hierarchical RNNs 
[19]

. Long 

Short-Term Memory Network (LSTM) is a further 

improvement of the traditional RNN network by 

introducing memory cells on the input, output, and 

forgetting past information to construct new cell statesCt 
Realize the data transmission, and control the path of data 

transmission by logic operation through input gate, output 

gate, and forget gate, so as to complete the processing of 

longer time series data, and its LSTM network gate cell 

structure is shown in Figure 2. The new cell state Ct and 

the output state Ht of the LSTM core are constructed with 

the following equations: 

Ct = ft⊗ Ct−1 + it⊗ tanh(Ht−1)                   (5) 

Ht = ot⊗ tanh(Ct)                              (6) 

where ft  is the forgetting gate, which serves to 

make the cell forget or remember the state of the previous 

cell Ct−1  The input gate it  is the input gate, which 

controls the input signal and thus updates the memory cell; 

the current cell state is obtained by reconstructing the cell 

through the forgetting gate and the input gate Ct The 

output gateot The output gates are used to control the 

state of the cell Ct The output gates are used to control 

the state of the cell so that it is transferred to the next cell. 
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Figure 2  LSTM network gate cell structure 

However, the LSTM model also has shortcomings, 

when dealing with data samples with a large number of 

features, overfitting is prone to occur, which requires the 

use of some optimization algorithms to find the optimal 

number of implied layers and initial learning rate and 

other parameters to increase the model nonlinear fitting 

performance and prediction accuracy 
[20]

. 

2.3 Particle Swarm Optimization (PSO) algorithm 

 

Figure 3  Particle swarm optimization algorithm 

optimization process 

The particle swarm algorithm (PSO) is an intelligent 

algorithm developed by observing the social behavior of 

birds. The PSO algorithm is similar to the flock feeding 

process, and is widely used in the global optimization 

process of hyperparameters due to its simple principle and 

easy operation, which refers to the individuals in the 

population as a particle, and each particle is a possible 

solution of the optimized parameter in the global search 

space. Each particle is a possible solution of the 

optimized parameter in the global search space, and its 

characteristic index mainly includes three aspects: 

position, speed and fitness value. Firstly, the fitness value 

of each particle is calculated by the fitness function to 

memorize the optimal position and speed of all particles. 

In each iteration, the particle reaches a new position by 

adjusting the velocity component of any dimension and 

calculating it, and so on, until the particle finds the 

optimal position or reaches the number of iterations, so as 

to complete the optimization process of the particle in the 

multidimensional search space, the particle swarm 

optimization algorithm is shown in Figure 3. In this paper, 

we use the PSO algorithm to optimize the 

hyperparameters in the CNN-LSTM model and derive the 

optimal solution to avoid the overfitting phenomenon 

during model training. 

2.4 CNN-LSTM-PSO hybrid model 

In the regression prediction of tool wear, the 

convolutional layer in the CNN model is first used to 

obtain the weight parameters, and the pooling layer is 

used for dimensionality reduction to mine the local 

features related to tool wear, and its output is a 

one-dimensional spatial feature vector. The output feature 

vector is then trained as an LSTM model, which enables 

the two models to complement each other in time and 

space, thus improving the accuracy of prediction. Figure 4 

shows the CNN-LSTM model prediction process based 

on particle swarm optimization for multi-channel feature 

fusion proposed in this paper. The essence is to use the 

CNN convolutional neural network model as a spatial 

feature extractor and the LSTM model as a trainer for 

regression prediction, based on which the 

superparameters such as initial learning rate and number 

of hidden layer units in the LSTM model are optimized 

by the PSO algorithm, so that the model nonlinear fitting 

performance is improved and the tool wear prediction 

effect is optimized, and the specific steps are as follows: 

Step 1: The original signals of the 7 channels are 

processed for noise reduction and feature extraction and 

fusion in the time domain, frequency domain and 

time-frequency domain, respectively. 

Step 2: Using Pearson's correlation coefficient 

formula to downscale the above feature data to construct 

the training and test sets of the model. 

Step 3: Build a convolutional neural network, train it 

using the training set and test set from step 2, output a 

spatial feature vector, and form a new training set. 

Step 4: The hyperparameters such as initial learning 

rate and number of hidden layer units in the LSTM model 

are used as optimization-seeking processing objects by 

the PSO algorithm, and the particle swarm optimization 

model is initialized. 
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Figure 4  CNN-LSTM-PSO model prediction flow 

Step 5: As shown in Figure 6, firstly, the particle's 

fitness value is calculated, secondly, pbest, gbest are 

updated according to the fitness, and finally, the position 

and velocity of the updated particle are recorded. 

Step 6: When the maximum number of iterations is 

reached or the most suitable position is found, the whole 

loop is terminated and the optimal hyperparameters are 

derived. If the termination condition is not reached, then 

return to step 5 for the next iteration. 

Step 7: Train the LSTM model with the training set 

formed in step 3 and the hyperparameters obtained in step 

6, thus completing the regression prediction of tool wear. 

3 Construction of tool wear sample dataset 

3.1 Multi-channel feature extraction and fusion 

The experimental data were obtained from the open 

data of the 2010 High Speed CNC Machine Tool Health 

Prediction Contest of the Prediction and Health 

Management Society (PHM), New York, USA
[21]

. The 

dataset is the result of real-time tool wear monitoring 

experiments on six ball-ended milling tools. In this paper, 

the experimental dataset of group C1 is selected, where 

the experimental data of the first 200 tool walks of group 

C1 is used as the sample training set and the experimental 

data of the last 115 tool walks are used as the test set. The 

original signals in each dataset include X-axis, Y-axis and 

Z-axis cutting force signals, X-axis, Y-axis and Z-axis 

vibration signals and acoustic emission signals, among 

which cutting force signals and vibration signals contain 3 

channels and acoustic emission signals are 1 channel 

signals, totaling 7 channels. 

In this experiment, the tool is walked once every ∆t 

time, and each time the tool is walked, the original signal 

of 7 channels can be collected, and the number of collected 

points of the original signal of each single walk is about 

200000 or more, which shows that the number of signal 

data is huge and there is a lot of noise, and these noises are 

often caused by the instability of the system at the moment 

the tool is cut in and out. This requires noise reduction for 

all types of raw signals collected above to avoid adverse 

effects during model training. Therefore, the sampling 

points with data labels from 50001 to 100000 in the raw 

signal are collected respectively as the research object. The 

results of the comparison between the original signal and 

the noise reduction signal are shown in Figure 5, which 

shows that the signal fluctuation after noise reduction is 

uniform and noiseless. In this experiment, the number of 

tool walks in each channel is 315, and there are 7 channels 

in total, so the original signal can form a 315×7 tool wear 

signal matrix after noise reduction. 

 
(a) 

 
(b) 

Figure 5  Comparison results between the original 

signal and the noise reduction signal.(a) Raw signal 

data.(b) Signal data after noise reduction 

The 315×7 signal matrix after noise reduction is 

extracted in the time domain, frequency domain and 

time-frequency domain, and the time-domain information 

mainly includes mean, standard deviation, root mean 

square, etc., totaling 13 time-domain features; the 

frequency domain information mainly includes frequency 

domain amplitude mean, center of gravity frequency, 

mean square frequency, etc., totaling 5 frequency domain 

features; the wavelet packet decomposition is performed 

on the original signal, resulting in 8 frequency bands, and 

the energy of each frequency band is used as 

time-frequency domain information, totaling 8 

time-frequency domain features. The energy of each 

frequency band is used as time-frequency domain 

information, and the total is 8 time-frequency domain 

features, so 26 features can be extracted from each 

channel signal. The features of all channels are fused to 

obtain 182 features, and the matrix is reorganized to 

obtain a 315×182 feature matrix. 
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3.2 Feature dimensionality reduction processing 

The ball-head milling cutter used in this experiment 

has three teeth in the CNC machining process. In order to 

improve the accuracy and precision of tool wear 

prediction, the rear face wear of each tooth needs to be 

measured and its average value is taken to characterize 

the actual wear of the tool. In this experiment, there are 

315 tool walks, and the average value of the measured 

wear after each tool walk is composed of a sample target 

matrix with a matrix dimension of 315×1. Each value in 

the sample target matrix is the output data of the 

CNN-LSTM-PSO wear prediction model. In this 

experiment, the LEICA MZ12 microscope was used to 

measure the tool rear face wear, and its C1 group tool 

wear variation curve is shown in Fig. 6, and its variation 

pattern is consistent with the temporal information 

mentioned in the previous section. 

 

Figure 6  Test tool wear variation curve 

According to the above, the extracted features 

yielded a feature matrix of 315 × 182 by multi-channel 

feature fusion, but not all the features can characterize the 

wear of the back tool face. In order to find the correlation 

between the feature matrix and the target matrix more 

clearly, the above multi-channel fused feature matrix and 

the tool wear value are normalized, and the normalized 

processing formula is 

𝑋𝑛 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
                              (7) 

The correlation between the normalized sample data 

and the tool wear curve is shown in Figuer 7. It can be 

seen from the figure that there are many features that do 

not correlate with the tool wear values or have weak 

correlation that will interfere with the tool wear prediction 

model and should be given to be removed. And Pearson 

correlation coefficient is the most widely used correlation 

coefficient analysis method, which can be used to 

measure the correlation between the extracted feature 

values and tool wear 
[22]

. Its calculation formula is: 

𝑃𝑥𝑦 =
𝑛∑𝑥𝑖𝑦𝑖 −∑𝑥𝑖 ∑𝑦𝑖

√𝑛∑𝑥𝑖
2 − (∑𝑥𝑖)

2√𝑛∑𝑦𝑖
2 − (∑𝑦𝑖)

2
      (8) 

where Pxy  denotes the Pearson correlation 

coefficient of the signal feature x and the tool wear value 

y. The Pearson correlation coefficient formula is used to 

calculate the 315 × 182 feature matrix and filter out 

|Pxy| ≥ 0.9 the strongly correlated features as the input 

of the prediction model. In total, 47 strongly correlated 

features are extracted through the calculation, taking the 

X-axis cutting force signal as an example, 7 strongly 

correlated features are obtained after dimensionality 

reduction, and the sample data of the signal after 

dimensionality reduction are shown in Figure 8, which 

shows that the noise signals with poor correlation are 

deleted, and the stripped out data with poor correlation 

are shown in Figure 9; in this paper, the 47 strongly 

correlated features are fused and reorganized, and the 

dimensionality of the sample feature matrix is 315×47. 47, 

and this sample feature matrix is the input data of 

CNN-LSTM-PSO wear prediction model. 

 

Figure 7  Normalised sample dataset 

 

Figure 8  Sample data after dimensionality reduction 

 

Figure 9  Deleted poor correlation data 
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4 Experimental verification and analysis of 

tool wear 

4.1 Tool wear experimental conditions 

The experimental conditions for tool wear are shown 

in Figure 10, whose cutting vibration signals were 

collected using a Kistler 8636C piezoelectric 

accelerometer, cutting force signals were collected using 

a Kistler 8152 three-way platform dynamometer, and 

acoustic emission signals were collected using a Kistler 

9265B acoustic transmitter, whose relevant CNC 

machining cutting parameters are shown in Table1. 

 

Figure 10  Experimental conditions for tool wear 

Table 1  CNC machining cutting parameters 

Main shaft 

Rotational 

Speed 

Feeding 

Speed 

Back 

draft 

Side Eating 

Knife 

quantity 

Feed 

amount 

Cold cutting 

conditions 

10400 1555 0.2 0.125 0.001 Dry cutting 

In this paper, the raw signals related to tool wear are 

collected in real time according to the above experimental 

conditions, and each channel raw signal is processed by 

noise reduction, extraction, fusion and dimensionality 

reduction to obtain a 315×47 sample feature matrix, and a 

sample dataset with spatio-temporal correlation of traffic 

flow is jointly constructed with 315×1 sample target 

matrix with dimensionality of 315×48. CNN-LSTM-PSO 

The model first inputs the sample dataset into the 

multilayer CNN model to extract the spatial sequence 

features of the traffic flow data and outputs the spatial 

feature vector. Then the spatial feature vector is input to 

the multilayer LSTM model to extract the time series 

features of the data, thus combining the temporal features 

and spatial features. Finally, the PSO algorithm is used to 

optimize the hyperparameters in the CNN-LSTM model, 

so as to complete the prediction of tool wear. 

4.2 Setting of prediction model parameters 

In order to avoid the influence of external factors, 

the number of particle swarm individuals in the PSO 

algorithm is set to 15 and the maximum number of 

iterations is set to 60. The values of the initial learning 

rate parameter of the optimized CNN-LSTM model are 

set between 0.001 and 0.01, and the values of the number 

of hidden layer units are set between 1 and 100. The 

structural parameters of the tool wear prediction model 

after hyperparametric optimization based on the PSO 

algorithm are shown in Table 2. 

Table 2  Structural parameters of CNN-LSTM-PSO 

model 

Structural 

section 
Network structure Name Parameter settings 

1 

Convolutional layer 1 Activation function: RELU 

Convolution kernel: 3*3 

Maximum pooling 

Batch standardisation layer 1 

Pooling layer 1 

2 

Convolutional layer 2 Activation function: RELU 

Convolution kernel: 3*3 

Maximum pooling 

Batch standardisation layer 2 

Pooling layer 2 

3 LSTM layer 1 

Learning rate: 0.004 

Number of hidden layer units: 

50 Activation function: 

Sigmoid 

4 LSTM layer 2 

Learning rate: 0.004 

Number of hidden layer units: 

32 Activation function: 

Sigmoid 

5 Dropout layer 25% discard 

6 Output layer Activation function: Softmax 

In order to quantify the prediction performance of 

the tool life model, three objective evaluation indexes are 

selected, namely the mean absolute error MAE, the root 

mean square error RMSE and the coefficient of 

determination R2. Among them, the mean absolute error 

MAE can obtain an evaluation value, but the comparison 

between different models is required to reflect the model's 

superiority; the mean square error RMSE and the 

coefficient of determination R2 can directly characterize 

the model's superiority. The smaller the mean square error 

RMSE and the closer the coefficient of determination R2 

is to 1, the higher the accuracy and precision of the 

prediction model. The three evaluation indicators are 

calculated as follows: 

𝑀𝐴𝐸 =
∑ |𝑦𝑡 − �̂�𝑡|
𝑚
𝑡=1

𝑚
                                  (9) 

𝑅𝑀𝑆𝐸 = √
∑ (y𝑡 − �̂�𝑡)

2𝑚
𝑡=1

𝑚
                           (10) 

𝑅2 = 1 −
∑ (𝑦𝑡 − �̂�𝑡)

2𝑚
𝑡=1

∑ (𝑦𝑡 − �̅�)
2𝑚

𝑡=1

                           (11) 

where, m is the number of samples output from the 

fully connected layer, the number of samples in this paper 

is 315, and ŷt is the predicted value of tool wear, and yt 
is the actual value of tool wear. 
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4.3 Tool life prediction results 

In this paper, a CNN-LSTM model with 

multi-channel feature fusion using particle swarm 

optimization is used for tool wear regression prediction, 

and its test set prediction results are shown in Figure 11. 

The mean absolute error MAE value of the model was 

calculated to be 0.5848, the root mean square error 

RMSE value was 0.7281, and the coefficient of 

determination R2 value was 0.9964. The results show 

that the use of CNN-LSTM-PSO based model can 

effectively perform regression prediction of tool wear 

and achieve better results. 

 

Figure 11  CNN-LSTM-PSO test set prediction results 

Table 3 shows the effect of the PSO algorithm on the 

tool wear regression prediction model, where the 

hyperparameters such as the initial learning rate and the 

number of hidden layer units of the CNN-LSTM model 

rely on manual random selection, and it can be seen that 

the CNN-LSTM model optimized using the PSO 

algorithm has the best tool wear prediction. Compared 

with the CNN-LSTM model, its mean absolute error 

MAE and root mean square error RMSE are reduced and 

the coefficient of determination R2 is improved, and its 

performance index exceeds 0.99, while the performance 

index of the CNN-LSTM model with manually selected 

parameters is maintained at a maximum of about 0.98. 

This is mainly because the PSO algorithm obtained more 

accurate hyperparameter pairings after hyperparameter 

optimization of the CNN-LSTM model, which found the 

most critical attributes affecting the accuracy of tool wear 

prediction and avoided the blindness of setting parameters, 

thus improving the prediction results. 

Table 3  Effect of PSO algorithm on prediction model 

Algorithm 

Initial 

learning 

rate 

Number of hidden 

layer units 
Test set prediction results 

LSTM 1 LSTM 2 MAE RMSE R2 

CNN-LSTM 

0.01 100 50 2.9757 3.5829 0.9128 

0.01 60 20 2.2307 3.0005 0.9388 

0.001 100 50 2.0172 2.1781 0.9675 

0.001 60 20 0.9718 1.1914 0.9802 

CNN-SVM-PSO 0.004 50 32 0.5848 0.7281 0.9964 

To further validate the prediction performance of 

CNN-LSTM-PSO based tool wear, a comparative 

analysis was performed with other traditional prediction 

models in the past, such as BP neural network, CNN 

model, LSTM model and CNN-LSTM model. Figure 12 

shows the comparison results of the four traditional tool 

wear prediction models, and it can be seen from Figure 11 

that the root mean square error RMSE values of the 

CNN-LSTM-PSO model proposed in this paper are 

reduced by 78.59%, 56.85%, 66.99%, and 38.89% 

compared to the BP model, CNN model, LSTM model, 

and CNN-LSTM model, respectively. This shows that the 

prediction performance of the CNN-LSTM tool wear 

prediction model optimized based on the PSO algorithm 

proposed in this paper is superior due to the single 

algorithm of other traditional prediction models, 

incomplete feature extraction, and over-reliance on signal 

processing techniques and expert experience. 

 
(a) 

 
(b) 

 
(c) 
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(d) 

Figure 12  Prediction results of the four traditional models 

(a) BP model. (b) CNN model. (c) LSTM model.(d) CNN-LSTM model. 

Table 4  Comparison of prediction performance results 

of five models 

Algorithm 
Test set prediction results 

MAE RMSE R2 

BP Neural Network 2.5413 3.3946 0.9211 

CNN Algorithms 1.3242 1.6872 0.9705 

LSTM Algorithms 1.5425 2.2062 0.9667 

CNN-LSTM 

Algorithm 
0.9718 1.1914 0.9802 

CNN-SVM-PSO 

Algorithm 
0.5848 0.7281 0.9964 

Table 4 shows the comparison results of the 

prediction performance of the five models. It is found that 

the CNN-LSTM-PSO model using multi-channel feature 

fusion for tool wear prediction has the smallest value of 

mean absolute error MAE, which is reduced by 76.98%, 

55.84%, 62.09% and 39.82% compared to the BP, CNN, 

LSTM and CNN-LSTM models, respectively ; the value 

of the coefficient of determination R2 is closest to 1, 

which is 7.56%, 2.60%, 2.98%, and 1.63% higher 

compared to the BP, CNN, LSTM, and CNN-LSTM 

models, respectively. These two results again prove that 

the prediction of tool wear values using the 

CNN-LSTM-PSO model proposed in this paper is more 

accurate and can achieve more effective monitoring of 

remaining tool life and intelligent tool change. 

5 Conclusion 

In this paper, the open dataset of the tool health 

prediction competition is selected as the original data, and 

the original data is preprocessed using feature extraction 

and multi-channel fusion techniques, and then a 

CNN-LSTM model based on particle swarm optimization 

with multi-channel feature fusion is proposed to predict 

the tool wear values during milling machining, and 

compared with other single mechanical models and the 

traditional CNN-LSTM model analysis, and the results 

show that: 

(1) In this paper, the CNN model is used to extract 

local features from the feature matrix after multi-channel 

fusion and dimensionality reduction to obtain important 

information of tool wear data and avoid the interference 

of tool wear data by other factors. 

(2) The parameter search optimization of the tool 

wear prediction model by the particle swarm PSO 

algorithm reduces the subjective influence of manual 

parameter selection and avoids the blindness of setting 

parameters, thus improving the prediction accuracy. 

(3) Tool wear regression prediction using the 

CNN-LSTM-PSO model has a mean absolute error MAE 

value of 0.5848, a root mean square error RMSE value of 

0.7281, and a coefficient of determination R2 value of 

0.9964. This indicates that the model can effectively 

predict the remaining life of the tool with good results. 

(4) Compared with the BP model, CNN model, 

LSTM model and CNN-LSTM model, the mean absolute 

error MAE and root mean square error RMSE values of 

the CNN-LSTM-PSO model proposed in this paper have 

been reduced, and the value of the coefficient of 

determination R2 has been improved to be closest to 1. 

This indicates that the constructed tool life prediction 

model has less error, better accuracy and better. 

In the future, the CNN-LSTM-PSO tool wear 

prediction model can be widely used in the fields of 

intelligent tool change and tool life management for CNC 

machining in various factories. By predicting the tool wear 

value in real time, it can realize intelligent tool change in 

advance when the tool wear is at the critical threshold, thus 

improving the machining accuracy of products. 
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