Process and Component Analysis on S-CO2 Cooling Wall in the Coal-fired Boiler Power System
Abstract
Keywords
Full Text:
PDFReferences
Wang K, Li MJ, Zhang ZD, Min CH, Li P. Evaluation of
alternative eutectic salt as heat transfer fluid for solar
power tower coupling a supercritical CO2 Brayton cycle
from the viewpoint of system-level analysis. J Clean Prod
;279:123472. https://doi.org/10.1016/j.jclepro.2020.123472.
Mecheri M, Le Moullec Y. Supercritical CO2 Brayton cycles
for coal-fired power plants. Energy 2016;103:758–71.
https://doi.org/10.1016/j.energy.2016.02.111.
Fan YH, Tang GH. Numerical investigation on heat transfer
of supercritical carbon dioxide in a vertical tube under
circumferentially non-uniform heating. Appl Therm Eng
aMechanical Engineering Science Vol. 3 No.2 2021 41
;138:354–64.
https://doi.org/10.1016/j.applthermaleng.2018.04.060.
Le Moullec Y. Conceptual study of a high efficiency
coal-fired power plant with CO2 capture using a
supercritical CO2 Brayton cycle. Energy 2013;49:32–46.
https://doi.org/10.1016/j.energy.2012.10.022.
Xu J, Sun E, Li M, Liu H, Zhu B. Key issues and solution
strategies for supercritical carbon dioxide coal fired power
plant. Energy 2018;157:227–46.
https://doi.org/10.1016/j.energy.2018.05.162.
Liu C, Xu J, Li M, Wang Z, Xu Z, Xie J. Scale law of sCO2 coal
fired power plants regarding system performance
dependent on power capacities. Energy Convers Manag
;226:113505.
https://doi.org/10.1016/j.enconman.2020.113505.
Zhou J, Zhu M, Xu K, Su S, Tang Y, Hu S, et al. Key issues and
innovative double-tangential circular boiler configurations
for the 1000 MW coal-fired supercritical carbon dioxide
power plant. Energy 2020;199:117474.
https://doi.org/10.1016/j.energy.2020.117474.
Zhou J, Xiang J, Su S, Hu S, Wang Y, Xu K, et al. Key issues
and practical design for cooling wall of supercritical carbon
dioxide coal-fired boiler. Energy 2019;186:115834.
https://doi.org/10.1016/j.energy.2019.07.164.
Guo JQ, Li MJ, Xu JL, Yan JJ, Ma T. Energy, exergy and
economic (3E) evaluation and conceptual design of the
MW coal-fired power plants integrated with S-CO2
Brayton cycles. Energy Convers Manag 2020;211:112713.
https://doi.org/10.1016/j.enconman.2020.112713.
Tanimizu K, Sadr R. Experimental investigation of
buoyancy effects on convection heat transfer of
supercritical CO2 flow in a horizontal tube. Heat Mass
Transf Und Stoffuebertragung 2016;52:713–26.
https://doi.org/10.1007/s00231-015-1580-9.
Jiang PX, Zhang Y, Xu YJ, Shi RF. Experimental and
numerical investigation of convection heat transfer of CO2
at supercritical pressures in a vertical tube at low Reynolds
numbers. Int J Therm Sci 2008;47:998–1011.
https://doi.org/10.1016/j.ijthermalsci.2007.08.003.
Liao SM, Zhao TS. An experimental investigation of
convection heat transfer to supercritical carbon dioxide in
miniature tubes. Int J Heat Mass Transf 2002;45:5025–34.
Kim DE, Kim MH. Experimental investigation of heat
transfer in vertical upward and downward supercritical CO2
flow in a circular tube. Int J Heat Fluid Flow 2011;32:176–
https://doi.org/10.1016/j.ijheatfluidflow.2010.09.001.
Jiang PX, Xu YJ, Lv J, Shi RF, He S, Jackson JD. Experimental
investigation of convection heat transfer of CO2 at
super-critical pressures in vertical mini-tubes and in porous
media. Appl. Therm. Eng., vol. 24, 2004, p. 1255–70.
https://doi.org/10.1016/j.applthermaleng.2003.12.024.
Li ZH, Jiang PX, Zhao CR, Zhang Y. Experimental
investigation of convection heat transfer of CO2 at
supercritical pressures in a vertical circular tube. Exp Therm
Fluid Sci 2010;34:1162–71.
https://doi.org/10.1016/j.expthermflusci.2010.04.005.
Bae YY, Kim HY, Kang DJ. Forced and mixed convection
heat transfer to supercritical CO2 vertically flowing in a
uniformly-heated circular tube. Exp Therm Fluid Sci
;34:1295–308.
https://doi.org/10.1016/j.expthermflusci.2010.06.001.
Gupta S, Saltanov E, Mokry SJ, Pioro I, Trevani L,
McGillivray D. Developing empirical heat-transfer
correlations for supercritical CO 2 flowing in vertical bare
tubes. Nucl Eng Des 2013;261:116–31.
https://doi.org/10.1016/j.nucengdes.2013.02.048.
Li Z, Lu J, Tang G, Liu Q, Wu Y. Effects of rib geometries and
property variations on heat transfer to supercritical water
in internally ribbed tubes. Appl Therm Eng 2015;78:303–14.
https://doi.org/10.1016/j.applthermaleng.2014.12.067.
Shen Z, Yang D, Mao K, Long J, Wang S. Heat transfer
characteristics of water flowing in a vertical upward rifled
tube with low mass flux. Exp Therm Fluid Sci 2016;70:341–
https://doi.org/10.1016/j.expthermflusci.2015.09.021.
Li Z, Wu Y, Tang G, Zhang D, Lu J. Comparison between
heat transfer to supercritical water in a smooth tube and in
an internally ribbed tube. Int J Heat Mass Transf
;84:529–41.
https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.047.
Li Z, Tang G, Wu Y, Zhai Y, Xu J, Wang H, et al. Improved gas
heaters for supercritical CO2 Rankine cycles: Considerations
on forced and mixed convection heat transfer
enhancement. Appl Energy 2016;178:126–41.
https://doi.org/10.1016/j.apenergy.2016.06.018.
Gu J, Zhang Y, Wu Y, Li Z, Tang G, Wang Q, et al. Numerical
study of flow and heat transfer of supercritical water in
rifled tubes heated by one side. Appl Therm Eng
;142:610–21.
https://doi.org/10.1016/j.applthermaleng.2018.07.017.
Yang D, Pan J, Zhou CQ, Zhu X, Bi Q, Chen T. Experimental
investigation on heat transfer and frictional characteristics
of vertical upward rifled tube in supercritical CFB boiler.
Exp Therm Fluid Sci 2011;35:291–300.
https://doi.org/10.1016/j.expthermflusci.2010.09.011.
Yang Y, Bai W, Wang Y, Zhang Y, Li H, Yao M, et al. Coupled
simulation of the combustion and fluid heating of a 300
MW supercritical CO2 boiler. Appl Therm Eng
;113:259–67.
https://doi.org/10.1016/j.applthermaleng.2016.11.043.
Yang DL, Tang GH, Fan YH, Li XL, Wang SQ. Arrangement
and three-dimensional analysis of cooling wall in 1000 MW
S–CO2
coal-fired boiler. Energy 2020;197:117168.
https://doi.org/10.1016/j.energy.2020.117168.
Fan YH, Yang DL, Tang GH, Sheng Q, Li XL. Design of S–CO2
coal-fired power system based on the multiscale analysis
platform. Energy 2021;240:122482.
https://doi.org/10.1016/J.ENERGY.2021.122482.
Duda P, Taler J. A new method for identification of thermal
boundary conditions in water-wall tubes of boiler furnaces.
Int J Heat Mass Transf 2009;52:1517–24.
https://doi.org/10.1016/j.ijheatmasstransfer.2008.08.013.
E.W. Lemmon, M.L. Huber, M.O. McLinden. Reference fluid
thermodynamic and transport properties (REFPROP) 2007.
Kline N, Feuerstein F, Tavoularis S. Onset of heat transfer
deterioration in vertical pipe flows of CO2 at supercritical
pressures. Int J Heat Mass Transf 2018;118:1056–68.
https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.039.
Sun E, Xu J, Li M, et al. Connected-top-bottom-cycle to cascade
utilize flue gas heat for supercritical carbon dioxide coal fired
power plant. Energy Convers Manag 2018;172:138–54.
https://doi.org/10.1016/j.enconman.2018.07.017.
DOI: https://doi.org/10.33142/mes.v3i2.6727
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Yuanhong FAN, Danlei YANG, Guihua TANG, Xiaolong LI
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.