A Novel Dual Helical Magnetorheological Fluid Micro-Robot
Abstract
To address the problem of flexible drive control of gastrointestinal (GI) tract micro-capsule robot posture, a novel dual helix magnetorheological fluid (MRF) micro-robot (DHMRFMR) is proposed and developed in this paper. Based on the mechanical properties of magnetorheological fluid, the relationship model of magnetic field force is obtained, and the thrust model is established. Double micro DC deceleration motor is used to drive the two ends of the helical actuator to make the DHMRFMR forward and backward, by changing the external magnetic field rotation speed, direction and distance, adjust the attitude direction of the robot. Numerical simulation software ANSYS is used to analyze the motion law of external fluid of DHMRFMR, and the visualization of fluid velocity and pressure distribution is realized. The front-end helix actuator can change the flow path of the fluid, and the middle and tail of the DHMRFMR bear less pressure, which improves the stability and flexibility of the robot. The novel DHMRFMR is suitable for internal drive in bending environment, and has a good application prospect in biomedical engineering field in human intestinal unstructured environment.
Keywords
Full Text:
PDFReferences
Bray F, Ferlay J, Soerjomataram I, et al, 2018. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 68(6): 394-424.
Rondonotti E, Spada C, Adler S, et al, 2018. Small-bowel capsule endoscopy and device-assisted enteroscopy for diagnosis and treatment of small-bowel disorders: European Society of Gastrointestinal Endoscopy (ESGE) Technical Review. Endoscopy, 50(4): 423-446.
Bouchard S, Ibrahim M, Van Gossum A, 2014. Video capsule endoscopy: perspectives of a revolutionary technique. World Journal of Gastroenterology: WJG, 20(46): 17330.
Slawinski P R, Obstein K L, Valdastri P, 2015. Capsule endoscopy of the future: What’s on the horizon. World journal of gastroenterology: WJG, 21(37): 10528.
Sendoh M, Ishiyama K, Arai K I, 2003. Fabrication of magnetic actuator for use in a capsule endoscope. IEEE Transactions on Magnetics, 39(5): 3232-3234.
Kim B, Park S, Park J O, 2009. Microrobots for a capsule endoscope. IEEE/ASME International Conference on Advanced Intelligent Mechatronics. IEEE: 729-734.
Quirini M, Menciassi A, Scapellato S, et al, 2008. Design and fabrication of a motor legged capsule for the active exploration of the gastrointestinal tract. IEEE/ASME transactions on mechatronics, 13(2): 169-179.
Park H, Park S, Yoon E, et al, 2007. Paddling based microrobot for capsule endoscopes. Proceedings 2007 IEEE International Conference on Robotics and Automation. IEEE, : 3377-3382.
Liu Y, Wiercigroch M, Pavlovskaia E, et al, 2013. Modelling of a vibro-impact capsule system. International Journal of Mechanical Sciences, 66: 2-11.
Tabak A F, Yesilyurt S, 2012. Experiments on in-channel swimming of an untethered biomimetic robot with different helical tails. 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob). IEEE: 556-561.
De Falco I., Tortora G, Dario P., et al, 2014. An integrated system for wireless capsule endoscopy in a liquid-distended stomach. IEEE Transactions on Biomedical Engineering, 61(3):794-804.
Tortora G., Valdastri P., Susilo E., et al, 2009. Propeller-based wireless device for active capsular endoscopy in the gastric district. Minimally Invasive Therapy & Allied Technologies, 18(5):280-290.
Norton J, Hood A, Neville A, et al, 2016. RollerBall: a mobile robot for intraluminal locomotion. 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob). IEEE: 254-259.
Park H J, Kim D, Kim B, 2012. A robotic colonoscope with long stroke and reliable leg clamping. International Journal of Precision Engineering & Manufacturing, 13(8):1461-1466.
Salerno M, Rizzo R, Sinibaldi E, et al, 2013. Force calculation for localized magnetic driven capsule endoscopes. IEEE International Conference on Robotics and Automation. IEEE: 5354-5359.
Gumprecht J D J, Lueth T C, Khamesee M B, 2013. Navigation of a robotic capsule endoscope with a novel ultrasound tracking system. Microsystem technologies, 19(9): 1415-1423.
Hosseini S., Mehrtash M, Khamesee M, 2011. Design, fabrication and control of a magnetic capsule-robot for the human esophagus. Microsystem Technologies, 17(5-7): 1145-1152.
Zhang X, Mehrtash M, Khamesee M, 2016. Dual-axial motion control of a magnetic levitation system using hall-effect sensors. IEEE/ASME Transactions on Mechatronics, 21(2): 1129-1139.
Mehrtash M, Khamesee M, Tsuda N., et al, 2012. Motion control of a magnetically levitated microrobot using magnetic flux measurement. Microsystem Technologies, 18(9-10): 1417-1424.
Shi Q, Liu T, Song S, et al, 2021. An optically aided magnetic tracking approach for magnetically actuated capsule robot. IEEE Transactions on Instrumentation and Measurement, 70: 1-9.
Tang P, Liang L, Guo Z, et al, 2021. Orthogonal optimal design of multiple parameters of a magnetically controlled capsule robot. Micromachines, 12(7): 802.
DOI: https://doi.org/10.33142/mes.v4i1.7516
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Zhixiang LI, Minglu CHI, Shuaibing CHANG, Xiaoyan QIAN, Jiawen JIA, Jianbo LI, Chenyu WANG, Zuhua GUO
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.