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Special issue message 

 
 

 

With the development of advanced equipment manufacturing and the promotion of informationization and 

industrialization integration strategy, the traditional equipment fault diagnosis technology is difficult to meet the 

demand. The application of fault prediction and health management (PHM) technology can provide support for the 

intelligent improvement of industrial equipment condition monitoring and fault diagnosis. With the development of 

deep learning theory, its prediction effect is significantly higher than that of machine learning technology, and it has 

been widely used in condition monitoring and fault diagnosis in recent years. However, due to the defects in the 

network structure, it is still challenging to fully reveal the effective features present in the monitoring signal. Therefore, 

this journal makes comprehensive use of machine vision, data-driven, machine learning, deep learning and other 

methods, and combines expert experience and knowledge to transform sample characteristics into valuable information, 

so as to complete condition monitoring and fault diagnosis. 

 

To reflect the latest research results of condition monitoring and fault diagnosis in time and provide opportunities 

for academic exchange, we specially organized a special issue of condition monitoring and fault diagnosis. Six papers 

will be published in this issue, discussing the advantages and disadvantages of machine learning algorithms and deep 

learning theory, reconstructing and optimizing the algorithm, so as to improve the efficiency and accuracy of the 

condition monitoring and fault diagnosis model. Experimental verification and reliability analysis are carried out in the 

aspects of tool wear state monitoring, brake device life prediction, machine tool spindle fault diagnosis and gear 

reliability analysis. The method proposed in this journal can be widely used in various fields, which lays a theoretical 

foundation and scientific basis for improving the development of intelligent operation and health management in 

equipment manufacturing industry, conforms to the development trend of intelligent control and network interaction in 

the future, and has certain practical significance. 
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Technology in 2007 and 2011 respectively, and his PhD degree from Northeastern University in 2020. 
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Electromechanical Co., LTD. (China Shipbuilding Industry Corporation) as the project leader. Design and 
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National Natural Science Foundation project "Research on Efficient static/dynamic reliability Analysis 

and Reliability Optimization Design Method of Complex mechanical structures" and was responsible for 

the research on efficient static and dynamic reliability analysis method of mechanical structures. Technical 

basic scientific research project "Reliability simulation analysis technology of high-speed flexible 

mechanism of weapon equipment", responsible for reliability analysis method research; Thousands of 

domestic CNC lathe reliability improvement project, "high-grade CNC machine tools and basic 

manufacturing equipment" science and technology major special project, responsible for CNC machine 

tool quality reliability improvement; The national Natural Science Foundation of China Key project 

"Research on Dynamic and Gradual Reliability Robust Design Theory of key parts of machinery" is 

responsible for the research on dynamic reliability method of key parts of machinery. 

The research proposes a reliability analysis method based on PC-Kriging model and 

Isomap-Clustering update strategy. Firstly, in order to determine the optimal basis function of the Kriging 

model, a truncated set of sparse polynomials is used as the candidate set of the optimal basis function. 

Minimum Angle regression (LARS) was used to calculate the number of possible polynomial basis 

function sets and rank the basis function candidates, and Akaike Information Criterion (AIC) was used to 

determine the optimal polynomial form. Secondly, the dimension reduction method of Isomap and the 

k-means Clustering analysis algorithm are used in the new Isomap-clustering strategy to determine the 

representative points among hundreds or even thousands of candidate points. The Isomap-Clustering 

strategy can update the PC-Kriging model with several representative points near the limit state in each 

iteration. For implicit functional functions or time-consuming finite element computations, a new method 

is proposed to determine the optimal MC candidate sample pool size. Firstly, the confidence interval of the 

actual failure probability is estimated according to the relative error of the failure probability at the 

confidence level of 0.95. That is, based on the lower limit of the confidence interval, a new method is 

proposed to estimate the optimal number of MC samples. Subsequently, based on the upper limit of the 

confidence interval, an adaptive sampling region strategy similar to radial centralized sampling is  
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proposed to concentrate the candidate sampling points in the important high probability density 

region. Secondly, the k-means ++ clustering technology and the learning function LIF were used to 

complete the adaptive experimental design to realize parallel computing, that is, k sampling points were 

added in each iteration to update the PC-Kriging model, so that the accuracy of the limit state could be 

improved in different regions at the same time. In order to solve the reliability problem with small failure 

probability and long simulation time, a new reliability analysis method based on PC-Kriging model and 

radial concentrated importance sampling strategy (RCA-PCK) is proposed. Because the objective function 

needs to be calculated a lot of time in the optimization process, the research proposed a reliability analysis 

optimization method based on PC-Kriging model and PSO optimization algorithm (PCK-PSO). He is 

currently a lecturer at the School of Mechanical and Power Engineering, Yingkou Institute of Technology. 

He has published more than 20 papers, including more than 10 SCI and EI papers, and is the reviewer of 

many journal papers, such as Structures (JCR Area 1). Reliability Engineering & System Safety (JCR 
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He is currently a lecturer in the School of Mechanical and Power Engineering of Yingkou Institute of 

Technology, and has been awarded the "Double teacher and Double Energy Type" teacher for three 

consecutive years from 2021 to 2023. He has presided over 2 projects at the provincial level and above, 1 

project at the municipal level, and 3 projects at the university level. His current research interests include 

mechanical reliability analysis, intelligent operation and maintenance, and life prediction. 
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Abstract: 

For milling tool life prediction and health management, accurate extraction and dimensionality reduction of its tool wear features are 

the key to reduce prediction errors. In this paper, we adopt multi-source information fusion technology to extract and fuse the features 

of cutting vibration signal, cutting force signal and acoustic emission signal in time domain, frequency domain and time-frequency 

domain, and downscale the sample features by Pearson correlation coefficient to construct a sample data set; then we propose a tool 

life prediction model based on CNN-SVM optimized by genetic algorithm (GA), which uses CNN convolutional neural network as the 

feature learner and SVM support vector machine as the trainer for regression prediction. The results show that the improved model in 

this paper can effectively predict the tool life with better generalization ability, faster network fitting, and 99.85% prediction accuracy. 

And compared with the BP model, CNN model, SVM model and CNN-SVM model, the performance of the coefficient of 

determination R2 metric improved by 4.88%, 2.96%, 2.53% and 1.34%, respectively. 
Keywords: CNN-SVM; tool wear; life prediction; multi-source information fusion 

 

1 Introduction 

CNC machining center is a set of high-tech, high 

precision, high efficiency in one of the high precision end 

equipment, specifically for processing complex curved 

parts, its key technology to improve the level of 

equipment manufacturing industry is of great significance. 

CNC machining center due to the complexity of the 

processing object tool wear more serious, when the tool 

wear exceeds a given threshold will greatly affect the 

accuracy of the workpiece processing, resulting in the 

processing of product quality is not up to standard, not 

only waste processing input time and economic losses, 

and even lead to machine accidents
[1]

 . For complex 

curved parts with high precision machining requirements, 

how to make the tool wear before the critical threshold for 

intelligent tool change will be an important research 

direction for the future high-end manufacturing industry. 

Currently, data-driven methods combining sensor 

monitoring data with machine learning algorithms are 

widely used for tool life prediction 
[2]

. Monitoring data 

refers to the extraction of tool wear features in the time 

domain, frequency domain, and time-frequency domain 

using sensor technology to collect raw signals. However, 

most experts and scholars predict tool wear for only one 

signal
[3]

 , which often has a low prediction accuracy, so in 

this paper, three signals, cutting vibration signal, cutting 

force signal and acoustic emission signal, are collected in  

real time, and a multi-source information fusion 

strategy is adopted to fuse the features extracted from 

each signal and construct a sample feature matrix, so as to 

improve the accuracy of tool life prediction. Machine 

learning algorithm is to use the extracted tool wear 

features as the input of the model, simulate the whole 

process of tool life degradation, and compare the current 

working state with the historical data to complete the 

prediction of the remaining tool life 
[4]

. Common machine 

learning algorithms include BP neural network, RBF 

neural network, Support vector machine (SVM) etc. 

Wei Weihua 
[5]

 et al. optimized the BP neural 

network by genetic algorithm, which improved the 

optimization and learning ability of the model and 

ensured the efficiency and accuracy of tool wear 

recognition. Weiqing Cao
[6]

 et al. diagnosed the tool wear 

fault by fusing the information of RBF neural network 

and D-S evidence theory, and the experiment showed that 

the model could effectively diagnose the tool wear fault 

and its prediction accuracy was improved. The model can 

effectively diagnose the tool wear fault and its prediction 

accuracy is improved. Zhang Kun
[7]

 et al. constructed 

DCM-SVR model to predict the tool wear value of 
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machining process, which can correct the systematic error 

online and compensate the predicted value, and the results 

of comparison with other methods show that the 

prediction performance of DCM-SVM is improved by 

28.7% and the root mean square error is decreased by 

64.7%. Although the traditional tool life prediction 

methods have achieved certain results, the prediction 

model can only tap the shallow features of the sample 

data, the generalization ability is insufficient, the network 

fitting speed is slow, and it relies more on signal 

processing techniques and expert experience. 

In 2006, Hinton 
[8]

 et al. proposed the theory of deep 

learning, and convolutional neural network (CNN) is a 

typical representative of deep learning. Convolutional 

neural networks (CNNs) have powerful feature extraction 

ability, can adaptively mine the deep features of the input 

data, and get rid of the model's over-reliance on signal 

processing techniques and expert experience, so they have 

been widely used and researched by scholars in recent 

years. P. K. Ambadekar 
[9]

 et al. established a tool life 

prediction system using CNN convolutional neural 

networks, where an inverted microscope regularly takes 

The images of the tool were used as input and different 

categories of tool wear were used as output, and the 

results showed that the accuracy of the prediction using 

CNN model reached 87.26%, which can meet the 

practical needs of production. However, the output layer 

of the convolutional neural network (CNN) generally 

consists of a fully-connected layer and a Softmax layer. 

When dealing with data with a high degree of nonlinearity, 

the number of features in the output of the 

fully-connected layer increases proportionally, which can 

cause the overfitting phenomenon
[10]

 ; moreover, the 

prediction performance of the Softmax layer is not as 

good as that of the support vector machine (SVM) in 

dealing with regression problems. Therefore, the 

combination of convolutional neural network (CNN) and 

support vector machine (SVM) can make up for the 

shortcomings of the above CNN model. 

CNN-SVM is a tool life regression prediction model 

proposed by combining convolutional neural network 

(CNN) and support vector machine (SVM) methods, but 

if we want to continue to improve the model prediction 

performance we need to optimize the model 

hyperparameters, such as penalty parameterρ and kernel 

function width g, etc. Currently, the more common 

parameter optimization methods include manual 

parameter tuning, random optimization 
[11]

 , 

gradient-based optimization
[12]

 , and genetic algorithm 

optimization
[13]

. The genetic algorithm is scalable and 

easy to combine with other algorithms, and it can achieve 

fast optimization with less computation time and high 

robustness when computational accuracy is required, so it 

has attracted a lot of attention from scholars in the field of 

hyperparametric optimization in recent years 
[14]

 . 

Therefore, this paper uses a CNC machining center 

as a platform to collect cutting vibration signals, cutting 

force signals and acoustic emission signals of tools under 

different wear states in real time using sensor technology, 

and proposes a tool life prediction model based on 

CNN-SVM optimized by genetic algorithm (GA). The 

model uses CNN convolutional neural network as a 

feature learner and SVM support vector machine as a 

trainer for regression prediction. The powerful 

computational capabilities of the convolutional and 

pooling layers of the CNN convolutional neural network 

model are utilized to reduce the loss rate of tool wear 

features during translation and effectively control the 

fitting ability of the model; meanwhile, the powerful 

depth search and global search capability of the genetic 

algorithm is utilized to optimize two parameters, penalty 

factor c and kernel function radius g, in the SVM 

support vector machine to improve the tool life 

prediction accuracy. 

2 Construction of CNN-SVM-GA prediction 

model 

2.1 Convolutional Neural Network (CNN) 

Convolutional neural network (CNN)
[15]

 is a kind of 

neural network, a typical representative of deep learning, 

fundamentally it is a further extension of BP neural 

network, its main difference is the convolutional 

operation and pooling operation, which can realize local 

connection and weight sharing and greatly shorten the 

training time. CNN network structure contains not only 

the input layer, fully connected layer and output layer in 

BP network, but also its unique convolutional, pooling 

and RELU layers, the training model parameters still use 

gradient descent method to finally complete the 

regression prediction task. The principle is as follows: 

(1) The sample feature matrix is input to the CNN 

convolutional neural network for convolutional operation. 

The sample information is indirectly characterized by the 

local features of the sample through the weight value of 

each layer derived from the convolutional operation, and 

the higher the layer is, the more detailed the local features 

are extracted, and also the spatial continuity of the sample 

is maintained: 

Xi
k =∑Wi

kj
⨂Xi−1

j
+ bi

k                       (1)

n

j=1

 

Where Xi
k  denotes the feature matrix of the kth 

neuron at the output of the ith layer, andWi
kj

 denotes the 

weight value of the kth neuron in the ith layer, and ⨂ 

denotes the convolution operator, and Xi−1
j

 denotes the 

feature matrix of the jth neuron at the output of layer i-1, 

and bi
k is the bias coefficient of the kth neuron in layer i. 

(2) In order to improve the prediction accuracy of 

the tool wear life model, the CNN network uses ReLU 

function for nonlinear activation, which has good 

non-saturation characteristics to avoid the gradient 
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disappearance phenomenon. The activation function is 

shown in equation (2): 

Vi
k = Relu(Xi

k) = {
0, xi

k < 0

xi
k, xi

k＞0
                      (2) 

Where xi
k is the Xi

k each eigenvalue in the feature 

matrix. 

(3) Each tool wear feature data is input to the 

pooling layer after convolution operation, and the pooling 

type is chosen as maximum pooling, which can retain the 

original features and reduce the parameters of network 

training, and improve the robustness of the extracted 

features. The maximum pooling is shown in equation (3): 

Ci
k(s, t) = Max

1+(s−1)Q≤d≤sQ

1+(t−1)P≤h≤tP

{Vi
k(d, h)}                (3) 

where Vi
k(d, h) is the eigenvalue of column h of row 

d of the ith feature matrix input to the pooling layer, and 

Ci
k(s, t) is the eigenvalue of the sth row t column of the ith 

feature matrix obtained after pooling, and P and Q are the 

length and width of the pooled region, respectively. 

(4) The n feature matrices of dimension S × T, which 

are derived from each row of the sample feature matrix 

after two convolution and pooling operations, are input to 

the global average pooling layer. The dimensionality of 

the pooling kernel of the global average pooling layer is 

kept consistent with the dimensionality of the feature 

matrix, and the n feature matrices are dimensionality 

reduced to reduce the covariance of the sample features 

and avoid the influence of redundant features, thus 

reducing the training time of the LSTM long and short 

term memory network, so the whole CNN model finally 

outputs a feature vector Xt = {x1 , x2 , ... , xi , ... , xj , } 

where xi is calculated as shown in equation (4): 

xi =
1

ST
∑∑Ci

k(s, t)                            

T

t=1

(4)

S

s=1

 

According to the above, CNN networks also have 

shortcomings, such as overfitting when encountering data 

sets with a small number of features or high nonlinearity, 

which affects the accuracy of prediction. To address this 

problem, the SVM classifier needs to be used instead of 

the Softmax classifier in the CNN model to compensate 

for this disadvantage. 

2.2 Support vector machine (SVM) 

Support vector machine (SVM) 
[16] 

was proposed in 

1995 by Cortes and Vapnik et al. Based on statistical 

theory, this learning model has a supervised mechanism 

that can perform tasks such as pattern recognition, 

classification, and regression analysis. In this paper, the 

feature vector output from the global average pooling 

layer is used as the input of the SVM support vector 

machine model. The biggest advantage of the SVM 

algorithm is that it can handle data with high nonlinearity, 

and the number of features in the data set has basically no 

effect on its model complexity, so it can accomplish 

regression prediction for data sets with relatively large 

number of features. The mathematical model of SVM is 

shown in equation (5): 

{
 
 

 
 

min 
1

2
‖w‖ +ρ∑ξ

r

L

r=1

s. t. yr(wXr + b) +ξ
r
≥ 1, r = 1,2，⋯，L

     (5) 

Where w is the normal vector of the hyperplane, 

andρ is the penalty parameter, the ξr is the relaxation 

factor, b is the offset coefficient, and Xr is the feature 

vector of the rth sample, andyr is the tool wear value, L 

is the total number of feature samples, and the total 

number of samples in this paper is 315. 

The model of Eq. (5) is mostly used to deal with 

linearly divisible sample feature data, but the tool life 

sample data is linearly indivisible, so it is necessary to 

introduce the kernel function to up-dimension each 

labeled sample data. In this paper, the Gaussian radial 

basis kernel function is used to transform the nonlinear 

data of each label state into linear data in 

high-dimensional space, so that the analysis is possible, 

and then the optimal classification hyperplane is 

constructed based on the principle of maximizing the 

classification interval to complete the prediction of tool 

life, and the Gaussian radial basis kernel function is 

shown in Eq: 

K(X) = sgn(∑ar
∗

L

r=1

yrexp (−
‖Xr − X‖

2

2g2
) + θ∗)   (6) 

where sgn  is the sign function, ar
∗  is the 

Lagrangian multiplier, g is the kernel function width, and 

X is the sample label data, and θ∗ is the configuration 

factor. 

The width parameter g and the penalty coefficient c 

of the radial basis kernel function are the focus of the 

SVM algorithm tuning, which directly affect the training 

speed and prediction accuracy of the model, so how to 

find the optimal c and g parameter matching is the key of 

SVM model regression analysis. 

2.3 Genetic Algorithm (GA) 

Genetic Algorithm (GA) 
[17]

 is an intelligent 

algorithm that originates from the laws of nature and the 

mechanism of superiority and inferiority among living 

organisms. Using genetic algorithm, global search for 

superiority can be achieved, usually with three most 

important steps of selection, crossover and mutation, 

which are similar to the genetic laws of individual 

biological chromosomes. Therefore, this algorithm is 

widely used to solve search problems or to optimize some 

hyperparameters. Firstly, through coding, the set of 

strings of problem solutions is transformed into 

individuals that can be recognized by the genetic 

algorithm. Therefore, individuals with high adaptation 

values will survive and generate the next generation, 
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while individuals with low adaptation values will be 

eliminated; secondly, individuals with medium adaptation 

values will be "crossed over" to generate new individuals, 

which will form a new population with the original 

adaptive individuals; finally, the new population will be 

"mutated", i.e. Finally, the new population is subjected to 

"variation", i.e., the adaptation value of some individuals 

in the population is changed; so on and so forth, the 

whole population develops to a higher level and finally 

evolves the most adaptive individuals, i.e., the optimal 

solution, to complete the task of global optimization, etc. 

The optimization process of the genetic algorithm (GA) is 

shown in Figure 1. In this paper, it is the genetic 

algorithm (GA) that is used to complete the selection of 

hyperparameters in the SVM model, so as to improve the 

prediction accuracy and precision of the model. 

 

Figure 1  Flow chart of Genetic algorithm (GA) 

2.4 CNN-SVM model 

The essence of CNN-SVM convolutional support 

vector machine multi-input single-output regression 

prediction model is to use the CNN convolutional neural 

network model as a feature fuser and the SVM support 

vector machine as a trainer for regression prediction. The 

principle is firstly based on CNN convolutional neural 

network structure, using its convolutional layer in the 

network to obtain the weight parameters, pooling layer 

for dimensionality reduction, the sample set can be 

automatically feature mining and extraction from the 

input information without doing complex pre-processing, 

and fusion of features from shallow to deep as the 

network is continuously passed backwards. Its fusion 

pattern framework diagram is shown in Figure 2. Then 

the output feature vector (fusion value) is directly used as 

the input of SVM support vector machine for training, 

and the SVM model transforms these fusion values from 

low-dimensional space to high-dimensional space after 

CNN model processing, and then constructs an optimal 

decision function with the principle of maximizing 

classification interval to complete the regression 

prediction problem of data in low-dimensional space, 

which can realize the tool life prediction in the milling 

process using this method. Intelligent prediction of tool 

life in milling. The structure diagram of the CNN-SVM 

model is shown in Figure 3. 

 

Figure 2  CNN model fusion model framework diagram 

 

Figure 3  Structure of CNN-SVM model 

2.5 CNN-SVM-GA hybrid model 

The hybrid CNN-SVM model constructed in this 

paper uses genetic algorithm (GA) to optimize the two 

parameters of penalty factor c and kernel function radius 

g in the tool life prediction model of CNN-SVM 

described above. The resulting optimal solution is 

decoded as a parameter of the support vector machine to 

improve its generalization ability, speed up the network 

fitting, and make the tool wear prediction more accurate. 

The algorithmic flow of the tool life prediction technique 

based on CNN-SVM optimized by genetic algorithm is 

shown in Figure 4, and the specific steps are as follows: 

Step 1: The original signal (7 channels) related to 

tool wear is processed for noise reduction and feature 

extraction and fusion in the time domain, frequency 

domain and time-frequency domain, respectively. 

Step 2: Using Pearson's correlation coefficient 

formula for the above feature data to perform 

dimensionality reduction and random division of them to 

construct the training set and test set of the model. 

Step 3: building a convolutional neural network, 

trained using the training and test sets from step 2, the 

output of which is a feature vector. 

Step 4: Perform PCA feature dimensionality 

reduction on the extracted feature vectors to reduce the 

training time of the SVM and form a new training and 

test set. 

Step 5: The SVM model is trained with the training set 

formed in step 4, and the g and c parameters of the support 

vector machine are optimized using a genetic algorithm. 

Step 6: Input the test set formed in step 4 to the improved 

CNN-SVM model to test the model diagnostic effect. 
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Figure 4  Improved CNN-SVM lifetime prediction model 

3 Tool wear experiment process 

The experimental data were obtained from the open 

data of the 2010 High Speed CNC Machine Tool Health 

Prediction Competition of the Prediction and Health 

Management Society (PHM), New York, USA
[18]

 , whose 

tool wear experimental conditions are shown in Table 1. 

Table 1  Experimental conditions for tool wear 

Hardware 

Conditions 

Model and main 

parameters 

Cutting 

Conditions 
Parameters 

CNC Milling 

Machine 

CNC Milling Machine 

Roders Tech RFM760 
Spindle speed 10400 

Force Gauge 
Three-way force gauge 

Kistler 9265B 
Feeding speed 1555 

Charge amplifier 

Multi-channel charge 

amplifier 

Kistler 5019A 

Back draft 0.2 

Milling Material 
cube 

Inconel 718 

Side-draft 

amount 
0.125 

Tools 
Ball end carbide milling 

cutter 3 teeth 
Feed amount 0.001 

Data Acquisition 

Cards 

Data Acquisition Cards 

NI DAQ 

Sampling 

frequency 
50 

Wear Gauge 
Microscope 

LEICA MZ12 

Cooling 

conditions 
Dry cutting 

In the process of machining, the spindle speed was 

10400 RPM, the feed was 0.001 mm, the feed speed was 

set to 1555 mm/min, the tool side draft was 0.125 mm, 

and the tool back draft was 0.2 mm. The shape of the 

milled part was square, and the end face was milled by 

round-trip milling, and the length of the milled part was 

about 108 mm. The surface length is about 108 mm, and 

the machining process does not use cutting fluid.∆t The 

wear value of the rear face of the three teeth of the ball 

end mill was checked after each time. In this paper, the 

experimental data set of the first tool of C1 group is 

selected, and the data set collects and monitors the data of X, 

Y and Z axes cutting force signals, X, Y and Z axes vibration 

signals and acoustic emission signals, with a total of 7 

channels, each channel walking 315 times, the acquisition 

frequency is 50 KHz per channel, and the number of 

sampling points is above 200000 each time, and its related 

specific data acquisition system is shown in Figure The 

specific data acquisition system is shown in Figure 5. 

 

Figure 5  Tool wear data acquisition system 

Since the milling cutter used in the experiment has 

three teeth, the wear of the three teeth was measured after 

every∆t The wear of the three teeth was measured after 

each time. Figure 6 shows the wear curve of the first 

group of test tools, the purple curve is the wear of the first 

tooth, the blue curve is the wear of the second tooth and 

the yellow curve is the wear of the third tooth. In this 

paper, the average value of the wear of these three tool 

teeth is taken to represent the actual wear of the tool, and 

this average value is the sample target value of the 

improved CNN-SVM convolutional support vector 

machine model, i.e., the output data. From the figure, it 

can be seen that the tool wear is faster at the beginning of 

the tool wear period, flatter when it enters the middle 

period, and faster at the later period, which is consistent 

with the theory related to tool wear, which indirectly 

verifies the accuracy of the data set. 

 

Figure 6  Test tool wear variation curve 
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4 Pre-processing of tool wear characteristics 

4.1 Feature extraction and fusion 

During CNC machining, sensor technology is used 

to collect real-time signals related to tool wear. In this 

paper, cutting vibration signals are collected using a 

Kistler 8636C piezoelectric accelerometer, cutting force 

signals are collected using a Kistler 8152 three-way 

platform dynamometer, and acoustic emission signals are 

collected using a Kistler 9265B acoustic transmitter. The 

number of signal data collected above is huge, and there 

is a lot of noise, which is often caused by the instability of 

the system at the moment of cutting in and out of the tool, 

so it is necessary to perform noise reduction processing 

on the various types of raw signals collected above. The 

number of times the tool is walked in this experiment is 

315, and the number of acquisition points for each knife 

walk is about 200000 or more. In order to avoid adverse 

effects during model training, the sampling points with data 

labels of 50001 to 100000 in each acquisition signal are 

extracted for feature extraction and fusion in this paper. 

 

Figure 7  Wear feature extraction and fusion scheme 

The feature quantities related to the tool wear state 

are extracted in the time domain, frequency domain, and 

time-frequency domain for the above three types of 

signals, respectively. In order to realize the intelligent tool 

wear prediction, the time domain features of the original 

signal are extracted, including 13 kinds, namely, mean 

value, standard deviation, skewness, cliffness, maximum 

value, minimum value, peak-to-peak value, root mean 

square, amplitude factor, waveform factor, impact factor, 

margin factor, and energy; the frequency domain features 

are extracted, including 5 kinds, namely, frequency 

domain amplitude mean, center of gravity frequency, 

mean square frequency, variance frequency, and 

frequency variance; the time The extraction of frequency 

domain features mainly uses wavelet packet analysis to 

subdivide the original signal into different frequency 

bands, when the tool wear state changes the energy 

parameters of different frequency bands will also change, 

so the energy of each frequency band is the extracted 

time-frequency domain features. The wavelet packet 

decomposition is performed on the original signal, and 

the number of decomposed layers is set to 3, all of which 

are completed by db5 wavelet base, and the frequency 

domain is divided into 8 frequency bands, so that 8 

time-frequency domain features are extracted. In this 

experiment, the original signals of cutting vibration signal 

(3 channels), cutting force signal (3 channels) and 

acoustic emission signal (1 channel) are extracted and 

fused every ∆ t time, as shown in Figure 7, 13 time 

domain features, 5 frequency domain features and 8 

time-frequency domain features are extracted from each 

channel signal, so 26 features can be extracted from each 

channel signal, for a total of 7 channels and 182 features 

in total. The total number of features is 182. 

4.2 Feature dimensionality reduction processing 

The speed of the tool wear prediction model fitting 

operation is closely related to the number of features, the 

more features the more complex the model is, the slower 

the operation is, so it is necessary to filter and optimize all 

the features. The best way is to find the correlation 

between the above mentioned 182 features and the tool 

wear, and to delete the uncorrelated or weakly correlated 

features, thus optimizing the extraction of the tool wear 

signal features and making the model operation speed 

increase. The Pearson correlation coefficient is the most 

widely used correlation coefficient analysis method, 

which can be used to measure the correlation between the 

extracted eigenvalues and the tool wear amount 
[19]

. It is 

calculated as shown in equation (7): 

Pxy =
n∑xiyi −∑xi∑yi

√n∑xi
2 − (∑ xi)

2√n∑yi
2 − (∑yi)

2
       (7) 

wherePxy denotes the Pearson correlation coefficient 

of the signal feature x and the tool wear value y. where n 

denotes that there are n sets of signal values andxi 

denotes the ith value of the signal characteristic value, 

andyi denotes the ith value of tool wear. The Pearson 

correlation coefficient formula is used to calculate the 

correlation between the above 182 features and the tool 

wear values. Figure 8 shows the correlation of Pearson 

coefficients for each feature, the red area is|Pxy| < 0.5 

the features that are weakly correlated, with a total of 48 

feature values; the yellow area is0.5 ≤ |Pxy| < 0.9 The 

yellow area is for the features that are moderately 

correlated, with a total of 87 feature values; the green area 

is for the features that are strongly correlated, with a total 

of 87 feature values.|Pxy| ≥ 0.9 The green area is for the 

features that are strongly correlated, with a total of 47 

eigenvalues. In this paper, the 47 strongly correlated 

features are used as the input data for the training and 
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prediction of CNN-SVM model, so as to improve the 

computational speed and accuracy of tool wear prediction. 

 

Figure 8  Correlation of Pearson coefficients for each feature 

5 Tool wear experiment results and analysis 

5.1 Construction of the sample set data 

In this paper, firstly, sensor technology is used to 

collect the signals related to tool wear (7 channels), 

secondly, the original signals are subjected to noise 

reduction processing, feature extraction, feature fusion, 

dimensionality reduction processing and other operations 

respectively, and 47 strongly correlated features are 

derived to form a feature matrix as the input data for the 

training and prediction of the life prediction model, and 

its sample feature matrix dimension is 315×47; the wear 

of the three teeth of the milling tool is Finally, the above 

feature matrix is randomly sampled and feature coded, 

and then the training set and test set are divided, and the 

first 200 data are taken as the training set and the 

remaining data are taken as the test set. 

5.2 Setting of prediction model parameters 

In this paper, the sample set data are input to a 

CNN-SVM model based on genetic algorithm (GA) 

optimization for tool life prediction, where the initial 

learning rate parameter of CNN convolutional neural 

network is set to 0.001, the cross-entropy function is used 

as the loss function of the whole model, and the Adam 

optimizer is selected to optimize the hyperparameters, 

which is set to make the model generalization ability 

stronger. Second, the Softmax classifier on the fully 

connected layer is replaced with the SVM algorithm to 

better handle data with high nonlinearity, and an optimal 

decision function is constructed to complete the 

regression prediction of tool wear. 

The CNN-SVM-GA model selects the penalty 

parameter in the SVM modelρ and the kernel function 

width g, which are both set between 0 and 3, as the 2 

parameters for the optimization search process. The 

genetic algorithm (GA) adopts the strategy of superiority 

selection, crossover and variation to find the optimal 

hyperparameter pairing, with the crossover rate set to 0.35, 

the variation rate set to 0.1, the population size set to 20, 

and the evolutionary generation set to 3000. The specific 

parameters are shown in Table 2. Ten optimization 

operations were performed according to the parameters in 

Table 2, and the average value was taken as the final 

result, where the penalty parameter ρ  The optimized 

kernel function g is 1.421.ρ The optimized parameters, g, 

are migrated to the CNN-SVM model to complete the 

tool life prediction. 

Table 2  Genetic algorithm (GA) parameter settings 

GA algorithm parameters Parameter Value 

Evolutionary Algebra 3000 

Population size 20 

Crossover Rate 0.5 

Variation rate 0.1 

In order to quantify the prediction performance of 

the tool life model, three objective evaluation indicators 

are selected, namely the mean absolute error MAE, the 

root mean square error RMSE and the coefficient of 

determination R2. Among them, the mean absolute error 

MAE can obtain an evaluation value, but the comparison 

between different models is necessary to reflect the 

model's merit; the mean square error RMSE can measure 

the deviation between the observed value and the true 

value, the smaller the RMSE value, the better our model 

is. The smaller the RMSE value is, the better the model is; 

the coefficient of determination R2 can directly 

characterize the merit of the model, and the closer the 

value of the coefficient of determination R2 is to 1, the 

higher the accuracy and precision of the prediction model 

is. The three evaluation indicators are calculated as shown 

in equations (8) to (10): 

𝑀𝐴𝐸 =
∑ |𝑦𝑡 − 𝑦̂𝑡|
𝑚
𝑡=1

𝑚
                             (8) 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑡 − 𝑦̂𝑡)2
𝑚
𝑡=1

𝑚
                     (9) 

𝑅2 = 1 −
∑ (𝑦𝑡 − 𝑦̂𝑡)

2𝑚
𝑡=1

∑ (𝑦𝑡 − 𝑦̅)2
𝑚
𝑡=1

                     (10) 

where, m is the number of samples output from the 

fully connected layer, the number of samples in this paper 

is 315, andŷt is the predicted value of tool wear, andyt is 

the actual value of tool wear. 

5.3 Tool life prediction results 

Based on the open data of the CNC machining center 

tool health prediction contest, the CNN-SVM algorithm 

optimized by genetic algorithm (GA) was used for tool 

wear regression prediction, and its test set prediction 

results are shown in Figure 9. The mean absolute error 

MAE value of the model was calculated to be 0.7231, the 

root mean square error RMSE value was 0.8292, and the 

coefficient of determination R2 value was 0.9985. The 
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results show that the regression prediction of tool life can 

be effectively performed using the CNN-SVM-GA-based 

model with good results. 

 

Figure 9  CNN-SVM-GA test set prediction results 

Table 3 shows the effect of genetic algorithm (GA) 

on the tool life regression prediction model, where the 

penalty parameters of the CNN-SVM model ρ  and 

hyperparameters such as kernel function width g are 

chosen randomly by relying on manual, it can be seen that 

the CNN-SVM model optimized using genetic algorithm 

(GA) has the best tool life prediction. Compared with the 

CNN-SVM model, its mean absolute error MAE and root 

mean square error RMSE are reduced and the coefficient 

of determination R2 is improved, and its performance 

index reaches 0.99, while the performance index of the 

CNN-SVM model with manually selected parameters is 

maintained at a maximum of about 0.98. This is mainly 

because the hyperparameter optimization of the 

CNN-SVM model by Genetic Algorithm (GA) has 

obtained more accurate hyperparameter pairings, found 

the most critical attributes affecting the accuracy of tool 

life prediction, and avoided the blindness of setting 

parameters, thus improving the prediction effect. 

Table 3  Effect of genetic algorithm (GA) on the 

prediction model 

Algorithm 

Hyperparameters Test set prediction results 

Penalty 

Parameter 

Kernel 

width 
MAE RMSE R2 

CNN-SVM 

0.5 0.5 2.4859 2.8570 0.9817 

1 1 1.1671 1.4557 0.9851 

2 2 3.2250 4.1678 0.9628 

3 3 4.1927 5.7604 0.9296 

CNN-SVM-GA 0.511 1.421 0.7231 0.8292 0.9985 

To further validate the prediction performance of 

CNN-SVM-GA based tool life, a comparative analysis 

was performed with other traditional prediction models in 

the past, such as BP neural network, CNN convolutional 

neural network, SVM support vector machine, and 

CNN-SVM model. Figure 10 shows the comparison 

results of four traditional tool life prediction models, and 

it can be seen from Figure 9 and Figure 10 that the root 

mean square error RMSE performance of the five tool life 

prediction models is ranked as CNN-SVM-GA < 

CNN-SVM < CNN < SVM < BP, and their root mean 

square error is reduced by 83.06%, 78.13%, 74.45%, and 

43.04%, respectively. It can be seen that the CNN-SVM 

model based on genetic algorithm (GA) optimization 

proposed in this paper has obvious advantages in tool life 

prediction, which is because the CNN-SVM-GA model 

can deeply mine the hidden layer features of the data with 

high nonlinearity, the feature extraction is comprehensive, 

and the selection of hyperparameters does not have any 

dependence on expert experience. 

 
(a) 

 
(b) 

 
(c) 
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(d) 

Figure 10  Prediction results of the four traditional models 

(a) BP model (b) CNN model (c) SVM model (d) CNN-SVM model 

Table 4  Comparison of prediction performance results 

of five models 

Algorithm 
Test set prediction results 

MAE RMSE R2 

BP Neural Network 3.6862 4.8952 0.9498 

CNN Algorithms 2.5274 3.2457 0.9732 

SVM Algorithms 2.5671 3.7920 0.9689 

CNN-SVM Algorithm 1.1671 1.4557 0.9851 

CNN-SVM-GA 

Algorithm 
0.7231 0.8292 0.9985 

Table 4 shows the comparison results of the 

prediction performance of the five models, and it is found 

that the CNN-SVM-GA model using multi-channel 

feature fusion for tool life prediction has the smallest 

mean absolute error MAE, and the index performance 

ranking is CNN-SVM-GA < CNN-SVM < CNN < SVM 

< BP, which is reduced by 80.38%, 71.83%, 71.39%, and 

38.04%; the coefficient of determination R2 of the 

CNN-SVM-GA model proposed in this paper is 0.9985, 

which is closest to 1. The index performance is ranked as 

CNN-SVM-GA ＞ CNN-SVM ＞ CNN ＞ SVM ＞ 

BP, which is improved by 1.34%, 2.53%, 2.96%, and 

4.88%, respectively. These two results once again prove 

that using the CNN-SVM-GA model proposed in this 

paper for tool life prediction is more effective and can 

achieve more effective tool life prediction and health 

management in the milling process. 

6 Conclusion 

This paper completes the construction of a tool life 

sample dataset based on machine vision, feature 

extraction, and information fusion, and also proposes a 

CNN-SVM tool life prediction model based on genetic 

algorithm (GA) optimization. The model uses 

convolutional neural network (CNN) model as the feature 

fusion and support vector machine as (SVM) as the 

trainer for tool life regression prediction. And the 

prediction accuracy of the model is improved by using 

genetic algorithm (GA) to find the superiority of 

hyperparameters in the model. The results show that: 

(1) The mean absolute error MAE value of 0.7231, root 

mean square error RMSE value of 0.8292, and coefficient of 

determination R2 value of 0.9985 were obtained for tool life 

regression prediction using CNN-SVM-GA model. This 

indicates that the model can effectively predict the remaining 

life of the tool with good results. 

(2) The tool life prediction model is 

parameter-seeking by genetic algorithm (GA), and its 

decision coefficient R2 performance index reaches 0.99, 

which reduces the subjective influence of manual selection 

of parameters and avoids the blindness of setting 

parameters, thus improving the model prediction accuracy. 

(3) Compared with the BP model, CNN model, SVM 

model and CNN-SVM model, the mean absolute error 

MAE and root mean square error RMSE values of the 

CNN-SVM-GA model proposed in this paper are reduced, 

and the value of the coefficient of determination R2 is 

improved to be closest to 1. This indicates that the 

constructed tool life prediction model has stronger 

generalization ability, faster network fitting and tool wear 

prediction is more accurate. 

In the future, this CNN-SVM-GA tool wear 

prediction model can be widely used in various factories 

for CNC machining tool life management and other fields. 

By making real-time prediction of tool life, it can realize 

predictive maintenance of CNC machining tools and can 

perform intelligent tool change before tool wear is at a 

critical threshold, which is in line with the future 

development trend of intelligent control and network 

interactive production. 
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Abstract: 

The effective monitoring of tool wear status in the milling process of a five-axis machining center is important for improving product 

quality and efficiency, so this paper proposes a CNN convolutional neural network model based on the optimization of PSO algorithm 

to monitor the tool wear status. Firstly, the cutting vibration signals and spindle current signals during the milling process of the 

five-axis machining center are collected using sensor technology, and the features related to the tool wear status are extracted in the 

time domain, frequency domain and time-frequency domain to form a feature sample matrix; secondly, the tool wear values 

corresponding to the above features are measured using an electron microscope and classified into three types: slight wear, normal 

wear and sharp wear to construct a target Finally, the tool wear sample data set is constructed by using multi-source information fusion 

technology and input to PSO-CNN model to complete the prediction of tool wear status. The results show that the proposed method 

can effectively predict the tool wear state with an accuracy of 98.27%; and compared with BP model, CNN model and SVM model, 

the accuracy indexes are improved by 9.48%, 3.44% and 1.72% respectively, which indicates that the PSO-CNN model proposed in 

this paper has obvious advantages in the field of tool wear state identification. 
Keywords: five-axis machining center; tool wear; PSO-CNN; intelligent monitoring 

 

1 Introduction 

Five-axis machining center is a set of high-tech, high 

precision, high efficiency in one of the high precision end 

equipment, specifically for processing complex curved 

parts, its key technology to improve the level of 

equipment manufacturing industry is of great significance. 

And five-axis machining center. Due to its flexibility, 

versatility and high throughput, the machining 

environment is more complex and tool wear is more 

severe. Tool wear beyond a given threshold can greatly 

affect the machining accuracy of the workpiece, resulting 

in poor quality of the machined product 
[1]

. On the other 

hand, in order to ensure the machining accuracy, if the 

tool has a long remaining life, it will affect the economy 

of its use and increase the production cost, especially in 

the process of batch processing will also cause 

interruptions in the production beat, lower production 

efficiency and other problems. For complex curved parts 

with high precision machining requirements, how to make 

the tool wear before the critical threshold for intelligent 

tool change will be an important research direction for the 

future high-end manufacturing industry. 

Tool Condition Monitoring (TCM) has been 

recognized as an important method for preventing 

excessive tool wear and maintaining part tolerances and 

surface quality during the milling process 
[2]

. Its essence 

is the real-time acquisition of signals related to tool wear 

using sensor technology, as well as the capture of 

correlated features of tool wear using data-driven 

techniques to construct a reference model for feature 

monitoring. In the process of tool condition monitoring, it 

is usually necessary to pre-process the acquired raw 

signal, extract the effective features from the signal and 

construct a sample feature matrix as the input to the 

prediction model. The most commonly used feature 

extraction methods are: Empirical Mode Decomposition 

(EMD) 
[3]

, Fourier Transform 
[4]

 and Wavelet Packet 

Analysis 
[5]

 etc. Empirical mode decomposition (EMD) 

can effectively extract tool wear state features from the 

time and frequency domain, but it requires a high level of 

signal frequency processing and may suffer from severe 

endpoint effects and mode confounding in the process 
[6]

 . 

The Fourier transform is independently adaptive, allowing 

time domain features to be better revealed in the frequency 

domain, and is therefore widely used to extract frequency 

domain features of sample signals 
[7]

. Wavelet packet 
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analysis is used to decompose the time domain features 

into different frequency bands by using different types of 

filters to refine the signal, so it is mostly used to extract the 

time-frequency domain features of the sample signal 
[8]

. 

In the automated production process, a 

high-precision tool wear state prediction model can 

effectively predict the future tool wear degree, which is of 

great significance to improve the productivity and surface 

machining quality. Early scholars have made some 

achievements in constructing a tool wear state prediction 

model using mechanical learning techniques. Han 

Chengwen et al. identified two valuable features related 

to tool wear based on discrete wavelet transform ( DWT ) 

of thrust signal and artificial neural network ( ANN ), and 

then extracted them using DWT.This method can 

accurately estimate the CFRP drilling process tool wear
[9]

. 

Soufiane Laddada et al. used continuous wavelet 

transform for feature extraction and proposed an 

improved extreme learning machine ( IELM ) to map the 

input data by a nonlinear function in order to generate a 

degradation model to obtain health indicators to complete 

the prediction of the remaining tool life
[10] 

. Liang Yu et al. 

used a combination of time domain, frequency domain 

and wavelet analysis to extract the force and vibration 

signals and constructed the IHDGWO-SVM model for 

tool wear prediction. The experimental results showed 

that the prediction accuracy of the model was 92 %, 

which was significantly higher than other models 
[11]

. 

However, the machine learning method does not deeply 

mine the implicit information of the data, and its 

prediction accuracy and precision are not high. 

In recent years, deep learning theory has been widely 

used in the field of tool condition monitoring, and 

Convolutional Neural Network (CNN) is a typical 

representative of deep learning. Convolutional neural 

networks (CNNs) have powerful feature extraction 

capabilities, and their convolution and pooling operations 

can adaptively mine the deep features of the input data, 

which can better approximate the objective function 

through a large number of nonlinear mappings and 

improved feature representations 
[12]

. Therefore, a large 

number of researchers have started to use CNN network 

models for tool wear state recognition, such as Xin Cheng 

et al. conducted milling experiments on S45C steel under 

different machining parameters and used convolutional 

neural networks to mine potential features of multi-scale 

2D signals to construct a wear state recognition model, 

and the results showed that the method can effectively 

recognize tool wear state 
[13]

. Although CNN networks have 

achieved some achievements in tool wear status monitoring, 

how to avoid the overfitting phenomenon caused by gradient 

dispersion is an urgent problem to be solved. 

To solve the above problem, the hyperparameters in 

the convolutional neural network (CNN) tool condition 

monitoring model need to be optimized, such as batch 

size and Epoch count and other key parameters. Currently, 

the more common hyperparameter optimization methods 

include random optimization 
[14]

, gradient-based 

optimization 
[15]

, genetic algorithm optimization 
[16]

, 

particle swarm algorithm optimization 
[17]

, etc. Particle 

swarm algorithm (PSO) has powerful search performance 

and individual optimization capability, and can choose 

adaptive weights according to the number of iterations, 

thus avoiding the phenomenon of global optimal solution 

omission due to too fast convergence, so it has been 

widely used and studied by scholars in recent years 
[18]

. 

Therefore, this paper proposes a dynamic monitoring 

method for tool wear status based on machine vision, 

feature extraction, deep learning, and information fusion. 

The CNN convolutional neural network is used to mine 

the tool wear features, and the classifier is constructed in 

the output layer after a series of operations such as 

convolutional layer and pooling layer to output the tool 

wear status information; meanwhile, the particle swarm 

optimization algorithm (PSO) is used to optimize the 

hyperparameters in the CNN convolutional neural 

network to improve the accuracy and precision of the 

prediction model. It is verified that the PSO-CNN model 

proposed in this paper can accurately and efficiently predict 

the tool wear status, effectively ensure the machining 

quality of the part, improve the efficiency of tool use, and 

reduce the machining cost, which is an important step to 

realize the intelligence of CNC machining. 

2 Tool wear condition monitoring method 

2.1 PSO-CNN tool wear condition monitoring model 

Convolutional Neural Network (CNN)
[19]

 is a typical 

representative of deep learning, which is a locally 

connected and weight-sharing neural network structure 

consisting of input layer, convolutional layer, pooling 

layer, fully connected layer and output layer, and has 

obvious advantages for deep mining of data features. 

However, improper selection of hyperparameters in CNN 

networks can lead to slow convergence of the model and 

overfitting phenomenon. Therefore, this paper proposes a 

CNN convolutional neural network model based on the 

optimization of the PSO algorithm to classify and predict 

the tool wear state. The model firstly mines the features in 

the sample dataset deeply through a series of operations 

such as convolutional and pooling layers in the CNN 

network, The principle is as follows: 

The sample feature matrix after batch normalization 

and dimensionality reduction is input to the CNN 

convolutional neural network for convolutional operation. 

The sample information is indirectly characterized by the 

local features of the sample through the weight value of 

each layer derived from the convolutional operation, and 

the higher the layer is, the more detailed the local features 

are extracted, and also the spatial continuity of the sample 

is maintained, and its convolutional operation is shown in 

equation (1): 

Xi
k =∑Wi

kj
⨂Xi−1

j
+ bi

k                         (1)

n

j=1
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Where Xi
k  denotes the feature matrix of the kth 

neuron at the output of the ith layer, and Wi
kj

 denotes the 

weight value of the kth neuron in the ith layer, and ⨂ 

denotes the convolution operator, and Xi−1
j

 denotes the 

feature matrix of the jth neuron at the output of layer i-1, 

and bi
k is the bias coefficient of the kth neuron in layer i. 

Each tool wear feature data is input to the pooling 

layer after convolution operation, and the pooling type is 

selected as maximum pooling, which can retain the 

original features and reduce the parameters of network 

training, and improve the robustness of the extracted 

features. The maximum pooling is shown in equation (2): 

Ci
k(s, t) = Max

1+(s−1)Q≤d≤sQ

1+(t−1)P≤h≤tP

{Vi
k(d, h)}                (2) 

Where Vi
k(d, h) is the eigenvalue of column h of 

row d of the ith feature matrix input to the pooling layer, 

andCi
k(s, t) is the eigenvalue of the sth row t column of 

the ith feature matrix obtained after pooling, and P and Q 

are the length and width of the pooled region, 

respectively. 

For another，the PSO algorithm is introduced to 

optimize the hyperparameters of batch size and Epoch 

count in the CNN model, so as to Finally, a Softmax 

classifier is constructed in the output layer to predict the 

tool wear status and output the tool wear type, thus 

completing the prediction of the tool wear status of the 

5-axis machining center. The 5-axis machining center will 

take different processing solutions according to different 

prediction results, such as the system will have a warning 

prompt when the tool enters into a sharp wear stage, and 

complete intelligent tool change and other operations, and 

its PSO-CNN tool wear state monitoring model is shown 

in Figure 1. 

 

Figure 1  PSO-CNN tool condition monitoring model 

2.2 Prediction process of PSO-CNN monitoring model 

The tool condition monitoring process based on 

CNN convolutional neural network optimized by PSO 

algorithm proposed in this paper contains four main 

stages. 

(1) The original signal is pre-processed to eliminate 

the noise effect, and then the feature quantities related to 

the tool wear state are extracted in the time domain, 

frequency domain, and time-frequency domain to 

construct the sample data set M. 

(2) The sample data set M is randomly divided, and 

the first 200 samples are used as the training set and the 

remaining samples are used as the test set. The training 

set is input to the CNN network for model training, and 

the training process mainly includes two stages of 

forward propagation and backward propagation. Forward 

propagation is a series of operations such as convolution, 

pooling and full connection to obtain the output of the 

network, i.e., the probability distribution of the category 

of tool wear. Back propagation is to calculate the error 

between the probability value of the output of the CNN 

network and the standard answer, and then back 

propagate the calculated error to obtain the error of each 

layer, and finally fine-tune the whole network parameters 

by using gradient descent method to improve the whole 

CNN model. 

(3)The PSO algorithm is introduced to optimize the 

two hyperparameters of batch size and Epoch count to 

derive the best combination of parameters, and the best 

parameters are used for forward propagation of the CNN 

network, and iterative operations are performed on the 

network connection weight matrix until the errors 

converge and then the operations are terminated to 

complete the optimal training of the final model. 

(4)The test set is fed into the trained CNN model, 

and the three types of tool wear are output using the fully 

connected layer to complete the prediction of the type of 

tool wear state on a 5-axis machining center. 

3 Construction of tool wear sample data set 

3.1 Acquisition of cutting vibration signals and spindle 

current signals 

This paper uses sensors to collect cutting vibration 

signals and spindle current signals during the milling 

process of a 5-axis machining center in real time, and 

uses an electron microscope to measure the corresponding 

tool wear values to provide data support for the 

realization of tool remaining life prediction, the 

Measuring system models is shown in Figure 2. 

 

Figure 2  Measuring system models 

3.1.1 Vibration signal acquisition scheme 

The vibration signal is caused by the periodic 

vibration of the cutting system composed of machine 
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workpiece or tool, and the strength of the vibration 

between systems is closely related to the tool wear state. 

Acquisition of vibration signals generally choose 

acceleration sensors, according to the different 

measurement principles are broadly divided into three 

ways: piezo-resistive sensors, piezoelectric sensors and 

capacitive sensors, this paper uses BVM-YD-139 

piezoelectric acceleration sensors to collect vibration 

signals, in the installation, you can use magnetic 

adsorption on the surface of the parts to be processed for 

detection, but the results of measuring the tool vibration 

signal by the location of the installation However, the 

result of measuring the tool vibration signal is affected by 

the location of the installation, and the strength of the 

machine tool system vibration and the interference of 

external environmental factors will also have an impact 

on the vibration signal acquisition, so the vibration signal 

collected needs to be processed for noise reduction. 

3.1.2 Spindle current signal acquisition scheme  

The spindle current during milling is the operating 

current generated by the spindle during the machining of 

the part. According to the relevant data, the more serious 

the tool wear, the higher the machine tool spindle current, 

which is almost linearly proportional, so the machine tool 

spindle current signal can indirectly reflect the tool wear 

status. This paper uses HC33C3 current sensor to acquire 

spindle current signal, which is characterized by simple 

installation, not restricted by machining environment and 

relatively wide application range. At the same time, the 

machine tool spindle current signal is easy to obtain and 

can be collected directly from the machine tool, but the 

spindle motor interferes with the collected data at the 

moment of starting and braking, so the collected current 

signal also needs to be processed for noise reduction. 

3.1.3 Noise reduction processing of the original signal 

In this paper, taking the cutting vibration signal as an 

example, the original vibration signal is collected every 

∆t, and its data volume is about 200000 or more, so the 

data labeled 50001～100000 in each collected signal is 

extracted for study to avoid the interference of the noise 

signal, and the comparison results of the original signal 

and the signal after noise reduction are shown in Figure 3. 

Then the signal data after noise reduction are extracted in 

the time domain, frequency domain and time-frequency 

domain respectively to extract the feature quantities 

related to the tool wear state in order to form the sample 

data set available for model training. 

 
(a) 

 
(b) 

Figure 3  Comparison results between the original 

signal and the noise reduction signal 

(a) Raw signal data (b) Signal data after noise reduction 

3.2 Extraction of tool wear characteristics 

3.2.1 Time domain feature extraction scheme 

The time domain characteristics of the signal are for 

a certain time period of the milling process without limits 

of expansion, and discovering and analyzing the pattern 

of variables of interest as they change over time. 

Although the acquired signal possesses a continuously 

changing waveform, it is difficult to extract the features 

related to tool wear directly from the original signal due 

to the high sampling frequency and the limitations 

imposed by frequent noise interference, so time domain 

analysis is required. Time domain analysis is to process 

the original signal with relevant parameters calculation 

and data analysis, so that the extracted time domain 

features are more representative. In this paper, in order to 

realize the intelligent prediction and health management 

of tool wear, the time domain features of the original 

signal are mainly divided into dimensional and 

dimensionless features. The dimensional time domain 

features can directly reflect the various changes of the 

milling tool machining process, mainly including five 

kinds of time domain features, which are absolute mean, 

variance, rms, peak and peak-to-peak; the dimensionless 

parameters are obtained by dividing the same dimension, 

which can avoid the interference of signal The 

dimensionless parameters are obtained by dividing by the 

same magnitude, which can avoid the interference of 

signal amplitude and other factors, and also can reflect 

other information of tool wear. The dimensionless 

features mainly include five time-domain features, which 

are skewness indicator, cliffness indicator, peak factor, 

coefficient of variation, and waveform factor. 

3.2.2 Frequency domain feature extraction scheme 

The frequency domain characteristics of a signal 

describe the pattern between the variables associated with 

the observed signal in terms of frequency, which is more 

profound and convenient than the time domain analysis. 

Fourier Transform is the most commonly used method for 

frequency domain analysis, which essentially converts the 

signal in the time domain to the frequency domain and 

performs tool life prediction by extracting the spectral 

features of the sample signal. When the wear level of the 
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tool changes during the milling process, the frequency 

components of the signal spectrum will change, so by 

analyzing the frequency domain features, we can 

accurately characterize the signal spectrum information 

and learn whether the tool is in a healthy state or not. The 

frequency domain features extracted in this project 

mainly include four frequency domain features: frequency 

mean square, frequency center of gravity, frequency 

variance, and peak frequency. 

3.2.3 Time-frequency domain feature extraction scheme 

Due to the change of geometric features or process 

parameters of the machined part, the signal collected by 

the sensor during the tool wear signal monitoring process 

can change instantaneously and abruptly, so the signal on 

the time-frequency domain needs to be analyzed. In this 

paper, we use wavelet packet analysis to sample the high 

frequency signal and low frequency signal respectively 

during the layer-by-layer decomposition process. After 

the decomposition of high and low frequency signals, so 

that the low and high frequency parts have the same 

resolution , the signal is subdivided into different 

frequency bands, and the frequency band structure of the 

monitoring signal will change with the change of tool 

wear state, resulting in the change of energy parameters in 

different frequency bands, so the energy magnitude of 

each frequency band is The energy level of each 

frequency band can accurately characterize the degree of 

tool wear
[20]

 , and the energy value of the frequency band 

is calculated as shown in equation (3): 

 En (x(t)) =
1

2−kN − 1
∑(xk,m(i))2             (3)

2k−1

m−0

 

The time domain signal is decomposed into wavelet 

packets according to the above principle, and the number 

of decomposed layers is set to 3, all done by the db5 

wavelet basis, and then the decomposed signal of each 

layer is reconstructed by wavelet coefficients for more 

accurate analysis. Because of the orthogonality of the 

wavelet packet basis, the energy of the frequency bands 

can be characterized by the wavelet packet coefficients of 

each frequency band. After 3 layers of decomposition, the 

frequency domain is divided into 8 frequency bands, and 

thus 8 time-frequency domain features are extracted. 

3.3 Construction of the sample feature matrix 

In this paper, the time domain, frequency domain 

and time-frequency domain features are extracted from 

the noise reduced data, while the noise reduction process 

is carried out every ∆t time for the original data, i.e. the 

original cutting vibration signal and the original spindle 

current signal are extracted every ∆t time. The above 

analysis extracts 10 time-domain features, 4 

frequency-domain features and 8 time-frequency-domain 

features, making a total of 22 feature values, thus forming 

a sample matrix, i.e.: from t to t + ∆t time, let the noise 

reduced cutting vibration data set as A = {A1，A2，⋯, AN}  

and the spindle current data set as B ={B1，B2，⋯，BN} 

and assuming that the above 22 features are calculated as 

Fi , where i = 1, 2, .⋯ , 22; then the extracted features for 

cutting vibration are Xi = Fi (A); and the features for 

spindle current are Yi = Fi (B), where i = 1, 2, and ⋯ , 22. 

 

Figure 4  Extraction method of raw signal data 

As shown in Figure 4, the above operation is 

repeated in the next ∆t time, i.e. from t + ∆t to t + 2∆t 

time, to calculate each sample feature value X, Y, until all 

features of all samples are extracted. However, the 

extraction of features in the time domain, frequency 

domain and time-frequency domain will have some data 

that are invalid and require corresponding dimensionality 

reduction, otherwise it will have a negative impact on the 

model training. For example, in the actual processing 

there is a spindle stall, similar to no load, or the spindle 

motor in the moment of starting and braking have a great 

impact on the collected data, which is a negative feature 

and should be identified and deleted. Therefore, for the 

sample set after feature extraction, the absolute average 

feature in each sample is thresholded, and if it is no-load 

data, stalled data or pulse data, the sample is deleted as a 

whole, and if it is not invalid data, the sample is retained. 

In this way, after screening all the samples, the remaining 

samples are the sample set after data processing, and each 

sample is the sample generated when the tool is cutting 

effectively. Based on this, a sample feature matrix is 

constructed for each signal with dimension N x 22 , the 

number of rows N of the matrix being the number of 

samples, and the structure of the cutting vibration sample 

eigenvalue X and the spindle current eigenvalue Y is 

shown in equations (4) and (5) as follows: 

𝑋 = [

𝑋1,1 ⋯ 𝑋1,22
⋮ ⋱ ⋮

𝑋𝑁,1 ⋯ 𝑋𝑁,22

]                        (4)   

𝑌 = [

𝑌1,1 ⋯ 𝑌1,22
⋮ ⋱ ⋮
𝑌𝑁,1 ⋯ 𝑌𝑁,22

]                         (5)   

3.4 Construction of the sample target matrix 

Slight wear, normal wear, severe wear are the 

three major stages to characterize the degree of tool 
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wear during the milling process
[21] 

.Table 1 gives the 

range of wear VB values of the back face of the tool in 

the three stages. 

Table 1  Tool wear range at various stages of back tool 

face 

Type Wear phase Rear tool face wear VB values 

1 Slight wear and tear 0-0.1mm 

2 Normal wear and tear 0.1-0.5 mm 

3 Rapid wear and tear 0.5mm or more 

The high pressure and temperature between the rear 

face of the tool and the machined surface during the 

milling process of the 5-axis machining center causes its 

rear face to wear faster and reach the dullness standard 

before the front face, so this paper mainly uses the 

electron microscope to measure the wear value VB in the 

rear face area of the tool. The measurement is performed 

by sampling every ∆t time and corresponds to the sample 

characteristics, and the magnitude of the rear face wear 

value VB at each moment is the sample target value of 

tool wear. Each sample target value can correspond to the 

wear stages in Table 1 to construct the sample target 

matrix Q. The dimension of the target matrix sample Q is 

N × 1 , which mainly contains three types of minor wear 

( set as label 1), normal wear (set as label 2) and sharp 

wear (set as label 3). The time domain, frequency domain, 

and time-frequency domain features of the cutting 

vibration signals and spindle current signals of the 

extracted tool under different wear states are fused with the 

target sample matrix Q using the multi-source information 

fusion technique, and finally a sample data set M is obtained, 

whose data set M is shown in equation (6): 

𝑀 = [

𝑋1,1 ⋯ 𝑌1,22 …

⋮ ⋱ ⋮ ⋱
𝑋𝑁,1 ⋯ 𝑌𝑁,22 …

𝑄1
⋮
𝑄𝑁

]                 (6) 

Since the measured wear value of the back tool face 

is a few moments, and the tool wear value is a continuous 

curve, the coordinates of the actual wear value can be 

interpolated to generate a cubic polynomial fit curve, and 

the reliability of the sample data set can be verified by 

comparing it with the tool wear curve. In this paper, a 

cubic polynomial is used for the interpolation calculation, 

as shown in equation (7): 

𝑦(𝑡, 𝜔) =∑𝜔𝑗𝑡
𝑗                             (7)

3

𝑗=0

 

Where ωj istj the coefficient, y is the interpolated 

tool wear value, and t is the time. For the tool wear values 

yi collected at time xi, a total of N times were collected, 

the loss function of the cubic polynomial interpolation 

curve is shown in equation (8): 

 𝐸𝑛 (𝜔) =
1

2
∑[𝑦(𝑡𝑖 , 𝜔) − 𝑦𝑖]

2                       (8)

𝑁

𝑖=0

 

And the difference curve coefficient ωj  can be 

found by calculation, which is shown in equation (9): 

𝑚𝑖𝑛
1

2
∑[𝑦(𝑡𝑖 , 𝜔) − 𝑦𝑖]

2                        (9)

𝑁

𝑖=0

 

The fitted curve of the cubic polynomial derived 

from the above calculation is shown in Figure 5. The 

fitted curves show that the tool wear is faster at the early 

stage, smoother when it enters the middle stage, and 

faster at the later stage, which is consistent with the curve 

situation of tool wear. The results show that this sample 

data set M can effectively characterize the tool wear state 

at each moment, and can be used as the input to the 

PSO-CNN model. 

 

Figure 5  Cubic polynomial interpolation of tool wear curves 

4 Experimental verification and analysis of 

tool wear 

4.1 Structural parameters of CNN network model 

In this experimental model, two hyperparameters, 

batch size and Epoch number , are selected as the object 

of the optimization process. To avoid the influence of 

external factors, the number of particle swarm individuals 

in the PSO algorithm is set to 10 and the maximum 

number of iterations is set to 50, as shown in Table 2. The 

optimized CNN model batch size parameter is set 

between 300 and 500, and the Epoch number is set 

between 5 and 15. The optimization was performed 

according to the parameter settings in Table 2, resulting in 

the best combination of hyperparameters with a batch size 

of 330 and an Epoch number of 10 iterations. 

Table 2  Initial parameter settings for the PSO algorithm 

PSO algorithm parameters Parameter values 

Number of individuals in the 

particle population 
10 

Maximum number of iterations 50 

Cognitive factors c1, c2 2, 2 

Inertia factor 0.5 

Particle vector dimension 2 
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The optimized parameters of the PSO algorithm 

were input to the CNN model for tool wear prediction, 

and the specific parameters of the CNN network model 

were set as shown in Table 3. Table 3 shows that the CNN 

network structure contains two convolutional layers, two 

pooling layers and one fully connected layer. In order to 

improve the prediction performance of the model, the 

training process uses the RELU function for nonlinear 

activation, which has good non-saturation characteristics 

and can avoid the gradient disappearance phenomenon, 

and the activation function is shown in equation (10): 

𝑉𝑖
𝑘 = 𝑅𝑒𝑙𝑢(𝑋𝑖

𝑘) = {
0, 𝑥𝑖

𝑘 < 0

𝑥𝑖
𝑘, 𝑥𝑖

𝑘＞0
                (10) 

where xi
k is theXi

k each eigenvalue in the feature 

matrix. 

Table 3  CNN network structure parameters 

Structural 

section 
Network structure Name Parameter settings 

1 

Convolutional layer 1 
Activation function: RELU 

Convolution kernel: 3*3 

Maximum pooling 

Batch standardisation 

layer 1 

Pooling layer 1 

2 

Convolutional layer 2 
Activation function: RELU 

Convolution kernel: 3*3 

Maximum pooling 

Batch standardisation 

layer 2 

Pooling layer 2 

3 Dropout layer 25% discard 

4 Output layer 
Activation function: 

Softmax 

In order to quantify the results of tool wear status 

monitoring, the precision, accuracy, recall, and F1-score 

values are selected as evaluation indexes in this paper, and 

the precision (Precision), accuracy (Accuracy), recall 

(Recall), and F1 values ( F1-score) are calculated as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                           (11) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
             (12) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                            (13) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
                  (14) 

In the above equation, the values of TP, TN, FP, and FN 

can be found in the confusion matrix, and the confusion 

matrix is shown in Table 4 for the dichotomy example. 

Table 4  Confusion Matrix 

 
True Value 

1 0 

Predicted value 
1 TP FP 

0 FN TN 

4.2 Prediction results of PSO-CNN model 

In this paper, we use the convolutional neural 

network architecture based on particle swarm 

optimization for tool state recognition training, and it can 

be seen from the accuracy and loss function of the model 

in Figure 6: the accuracy of the model shows an 

increasing trend during the first 50 iterations, and then the 

accuracy gradually increases. 

 

Figure 6  Accuracy and loss function graph 

The sample data set M is randomly divided, and the 

first 200 samples are used as training sets to train the 

constructed PSO-CNN model. The predicted results of the 

training set are shown in Figure 7. which shows that only 

2 out of 200 training samples were incorrectly identified, 

with an accuracy of 99.13%. The remaining samples are 

used as a test set to test the model, and the predicted 

results of the test set are shown in Figure 8. It can be 

found that only 2 out of 116 test samples were identified 

incorrectly, and the accuracy of the test set reached 

98.28%; the results show that the PSO-CNN model 

constructed in this paper can effectively identify the tool 

wear status and achieve better results. 

The confusion matrix of the PSO-CNN tool condition 

monitoring model test set is shown in Figure 9, which shows 

that the test set contains 42 samples of slight wear (label 1), 

31 samples of normal wear (label 2) and 43 samples of sharp 

wear (label 3). The model proposed in this paper identifies 

all the slight wear samples correctly when testing them, and 

the test accuracy reaches 100%; when testing the normal 

wear samples, one sample is incorrectly identified as slight 

wear, and the accuracy is 96.8%; when testing the sharp 

wear samples, one sample is incorrectly identified as normal 

wear, and the accuracy is 97.7%. 

 

Figure 7  Training set prediction results 
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Figure 8  Test set prediction results 

 

Figure 9  Confusion matrix 

The evaluation indexes of tool condition monitoring 

can be calculated through the confusion matrix, and the 

results of the evaluation indexes of its three condition 

labels are shown in Table 5. For the accuracy rate index, it 

can be seen that the slight wear has the highest accuracy 

rate, and its performance is ranked as slight wear ＞ 

sharp wear ＞ normal wear; for the correct rate index, it 

can be seen that the accuracy rate of all three wear states 

is 98%, which is consistent with the previous analysis; for 

the recall rate index, it can be seen that the recall rate of 

slight wear and normal wear does not reach 100%, which 

indicates that there are other wear states incorrectly 

identified These four results further verify the effectiveness 

of the PSO-CNN tool state recognition model. 

Table 5  Results of three tool condition evaluation indexes 

Label 

classification 

Accuracy 

rate 
Accuracy 

Recall 

Rate 

F1 

value 

Test 

samples 

Sample 

error 

Slight wear 

and tear 
1 0.98 0.98 0.99 42 0 

Normal wear 

and tear 
0.97 0.98 0.97 0.97 31 1 

Rapid wear 

and tear 
0.98 0.98 1 0.99 43 1 

In order to further verify the recognition 

performance of PSO-CNN model tool wear status, a 

comparative analysis was performed with other traditional 

recognition models in the past, such as BP neural network, 

CNN convolutional neural network, and SVM support 

vector machine, and the prediction results of these three 

traditional tool wear status recognition models are shown 

in Figure 10. From Fig. 8 and Fig. 10, it can be seen that 

the prediction effects of the four tool wear state 

recognition models are ranked as PSO-CNN model ＞ 

CNN model ＞ SVM model ＞ BP model. It can be 

seen that the CNN model optimized based on the PSO 

algorithm proposed in this paper has obvious advantages 

in tool wear state recognition because the CNN network 

in the PSO-CNN model can perform deep mining of the 

hidden layer features using convolution and pooling 

operations, and the PSO algorithm is able to match the 

two hyperparameters of batch size and Epoch count in the 

CNN network for seeking the best, thus avoiding the 

blindness of setting parameters, thus improving the 

accuracy of the prediction model. 

 
(a) 

 
(b) 

 
(c) 

Figure 10  Prediction results of the three traditional models 
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BP model. (b) CNN model.(c) SVM mode 

Table 6 shows the performance comparison results 

of the four tool wear state recognition models. The 

number of error samples identified by the BP model, 

SVM model and CNN model are 13, 6 and 4, respectively, 

and their accuracy rates are 88.79%, 94.83% and 96.55%, 

respectively. In contrast, the PSO-CNN model proposed 

in this paper identifies only 2 incorrect samples, and the 

accuracy rate is as high as 98.27%, which is 9.48%, 

3.44%, and 1.72% higher than the above three traditional 

models respectively. This shows that the prediction 

accuracy of the tool wear status of the CNN model 

optimized based on the PSO algorithm is significantly 

higher than other models under the conditions of the same 

number of samples, and its generalization ability is 

stronger and the network fitting speed is faster, which 

indicates that the prediction of the tool wear status using 

the PSO-CNN model is more accurate and can more 

effectively realize the tool status monitoring and 

intelligent tool change during the milling process of the 

5-axis machining center. This shows that using PSO-CNN 

model to predict the tool wear status will be more 

accurate and can more effectively realize the tool 

condition monitoring and intelligent tool change in the 

five-axis machining center. 

Table 6  Performance comparison results of four 

prediction models 

Network Model 

Number of misidentified samples 

Accuracy 
Minor 

Wear and 

tear 

Normal 

wear and 

tear 

Rapid 

Wear and 

tear 

BP 

Neural Networks 
1 4 8 88.79% 

SVM 

Support vector 

machines 

1 2 3 94.83% 

CNN 

Convolutional Neural 

Networks 

1 3 0 96.55% 

PSO-CNN 

Hybrid model 
0 1 1 98.27% 

5 Conclusion 

In this paper, firstly, cutting vibration signals and 

spindle current signals are collected, and data features 

characterizing tool wear are extracted in the time domain, 

frequency domain and time-frequency domain; secondly, 

the tool wear values corresponding to the above features 

are measured by electron microscopy, and they are 

divided into three categories according to wear values: 

slight wear, normal wear and sharp wear, and the 

construction of sample data sets is completed; finally, the 

PSO-CNN model proposed in this paper is used to 

complete classification and prediction of tool wear status 

and compare and analyze with other models, the results 

show that:  

(1) Parameter search optimization of CNN 

convolutional neural network by PSO algorithm yields 

the best combination of hyperparameters with a batch size 

of 330 and an Epoch count of 10. The blindness of setting 

parameters is avoided, thus improving the model 

prediction accuracy and precision. 

(2) The prediction accuracy of the PSO-CNN model 

constructed in this paper reaches 98.27%, which can meet 

the requirements of monitoring the tool wear status and 

can realize the predictive maintenance of CNC machining 

tools, that is, intelligent tool change before the tool wear 

is in sharp wear . 

(3) Comparing the prediction performance of the 

PSO-CNN model constructed in this paper with BP neural 

network, CNN convolutional neural network and SVM 

support vector machine, the results show that the 

PSO-CNN prediction model constructed in this paper has 

obvious advantages in the field of tool wear condition 

identification, and its accuracy indexes are improved by 

9.48%, 3.44% and 1.72% respectively compared with 

other models. 

In the future, this PSO-CNN tool wear state 

prediction model can be widely used in the fields of tool 

life prediction and intelligent operation and maintenance 

of CNC machine tools in various factories. By monitoring 

the cutting vibration signal and spindle current signal of 

the tool system in real time, the prediction of different 

tool wear states can be realized, and based on the 

prediction results the machine tool can make intelligent 

judgments and make corresponding processing, so as to 

improve the product machining quality and reduce the 

scrap rate, which has certain practical significance. 

Author Contributions: For Conceptualization, 

methodology, analysis, and writing original draft 

preparation, Wang Shuo; writing review and full-text 

editing, Yu Zhenliang; writing — original draft 

preparation,Lu Changguo; writing — original draft 

preparation, Wang Jingbo. 

Conflicts of interest: The authors declare no conflict of 

interest.All authors have read and agreed to the published 

version of the manuscript. 

Acknowledgments: The research work financed with the 

means of Basic Scientific Research Youth Program of 

Education Department of Liaoning Province, 

No.LJKQZ2021185; Yingkou Enterprise and Doctor 

Innovation Program (QB-2021-05). 

References 

[1] Danil Yu Pimenov. Andres Bustillo, Szymon Wojciechowski, 

et al. Artificial intelligence systems for tool condition 

monitoring in machining: analysis and critical review [J]. 

Journal of Intelligent Manufacturing,2022(3):34. 

[2] Bagri Sumant, Manwar Ashish, Varghese Alwin, et al. Tool 

wear and remaining useful life prediction in micro-milling 

along complex tool paths using neural networks [J]. Journal 



 

20                                                                         Mechanical Engineering Science  Vol. 4  No.2  2022 

of Manufacturing Processes,2021(1):71. 

[3] Olalere Isaac Opeyemi, Olanrewaju Oludolapo Akanni. Tool 

and Workpiece Condition Classification Using Empirical 

Mode Decomposition with Hilbert–Huang Transform of 

Vibration Signals and Machine Learning Models [J]. Applied 

Sciences,2023,13(4):78-79. 

[4] Wang X, Zheng Y, Zhao Z, et al. Bearing fault diagnosis based 

on statistical locally linear embedding [J]. Sensors, 

2015,15(7):16225-16247. 

[5] Guan Shan Kang, Zhenxing Peng Chang. Analysis on cloud 

characteristics of wear acoustic emission signal for vehicle 

cutting tool [J]. Editorial Office of Transactions of the 

Chinese Society of Agricultural 

Engineering,2016,32(20):97-99. 

[6] Jeon J.U, Kim S.W. Optical flank. wear monitor ing of cutting 

tools by image processing [J].wear, 1988,127(2): 207-217. 

[7] Pyatykh A. S., Savilov A. V., Timofeev S. A.. Method of Tool 

Wear Control during Stainless Steel End Milling [J]. Journal 

of Friction and Wear,2022, 42(4):9-11. 

[8] Wang Zhan, Leng Sheng, Min Tao, et al. Analysis of AE 

characteristics of tool wear in drilling CFRP/Ti stacked 

material [J]. MATEC Web of Conferences,2018(4):211. 

[9] Han, Chengwen, Kim, Kyeong Bin, et al. Thrust Force-Based 

Tool Wear Estimation Using Discrete Wavelet 

Transformation and Artificial Neural Network in CFRP 

Drilling [J]. International Journal of Precision Engineering 

and Manufacturing, 2021 (1):898-899. 

[10] Soufiane Laddada, Med. Ouali Si-Chaib, Tarak Benkedjouh, 

et al. Tool wear condition monitoring based on wavelet 

transform and improved extreme learning machine [J]. 

Proceedings of the Institution of Mechanical Engineers, Part 

C: Journal of Mechanical Engineering Science, 2020, 

234(5):1467-1468. 

[11] Liang Yu, Hu Shanshan, Guo Wensen, et al. Abrasive tool 

wear prediction based on an improved hybrid difference 

grey wolf algorithm for optimizing SVM [J]. Measurement, 

2022(1):187. 

[12] Caesarendra Wahyu, Triwiyanto Triwiyanto, Pandiyan 

Vigneashwara, et al. A CNN Prediction Method for Belt 

Grinding Tool Wear in a Polishing Process Utilizing 3-Axes 

Force and Vibration Data [J]. Electronics, 2021, 

10(12):76-78. 

[13] Xin Cheng Cao, Bin Qiang Chen, Bin Yao,, et al. Combining 

translation-invariant wavelet frames and convolutional 

neural network for intelligent tool wear state identification 

[J]. Computers in Industry,2019(1):106. 

[14] Stefan Droste, Thomas Jansen, Ingo Wegener. Upper and 

Lower Bounds for Randomized Search Heuristics in 

Black-Box Optimization. Electron [J]. Colloquium Comput. 

Complex, 2003(2):48-48. 

[15] Weifeng Lu, Bingyu Cai, Rui Gu. Improved Particle Swarm 

Optimization Based on Gradient Descent Method [J]. CSAE, 

2020(1): 121-126. 

[16] Salih Omran, Duffy Kevin Jan. Optimization Convolutional 

Neural Network for Automatic Skin Lesion Diagnosis Using a 

Genetic Algorithm [J]. Applied Sciences, 2023,13(5):56-57. 

[17] Zhang Xin, Jiang Yueqiu, Zhong Wei. Prediction Research on 

Irregularly Cavitied Components Volume Based on Gray 

Correlation and PSO-SVM [J]. Applied Sciences, 

2023,13(3):79-87. 

[18] Shi Jun, Zhang Yanyan, Sun Yahui, et al. Tool life prediction 

of dicing saw based on PSO-BP neural network [J]. The 

International Journal of Advanced Manufacturing 

Technology, 2022(123):11-12. 

[19] Gajera Himanshu K., Nayak Deepak Ranjan, Zaveri Mukesh 

A. A comprehensive analysis of dermoscopy images for 

melanoma detection via deep CNN features [J]. Biomedical 

Signal Processing and Control,2023,79(P2). 

[20] Wu Shun Xing, Li Peng Nan, Yan Zhi Hui, Zhang Li Na, Qiu 

Xin Yi, Yang Jin. Wavelet Packet analyses of Acoustic 

Emission Signal for Tool Wear in High Speed Milling [J]. Key 

Engineering Materials,2013(1):589-590. 

[21] Liang Junhua, Gao Hongli, Xiang Shoubing, et al. research 

on tool wear morphology and mechanism during turning 

nickel- based alloy GH4169 with PVD-TiAlN coated carbide 

tool [J]. Wear, 2022(1):508-509.

 



 

Mechanical Engineering Science  Vol. 4  No.2  2022                                                                         21 

Viser Technology Pte. Ltd.  
Mechanical Engineering Science 
DOI: 10.33142/mes.v4i2.9084 

  

Fault monitoring and diagnosis of motorized spindle in 

five-axis Machining Center based on CNN-SVM-PSO 

Shuo WANG
1
, Zhenliang YU

1*
, Xu LIU

2
, Zhipeng LYU

3
 

1. School of Mechanical and Power Engineering, Yingkou Institute of Technology , Yingkou, China 
2. Yingkou Dingsheng Heavy Industry Machinery Co. LTD, Yingkou, China 
3. School of Mechanical and Power Engineering, Shenyang University of Chemical Technology , Shenyang, China 

*Corresponding Author: yuzhenliang, email address: yuzhenliang_neu@163.com 

Abstract: 

A spindle fault diagnosis method based on CNN-SVM optimized by particle swarm algorithm (PSO) is proposed to address the 

problems of high failure rate of electric spindles of high precision CNC machine tools, while manual fault diagnosis is a tedious task 

and low efficiency. The model uses a convolutional neural network (CNN) model as a deep feature miner and a support vector machine 

(SVM) as a fault state classifier. Taking the electric spindle of a five-axis machining centre as the experimental research object, the 

model classifies and predicts four labelled states: normal state of the electric spindle, loose state of the rotating shaft and coupling, 

eccentric state of the motor air gap and damaged state of the bearing and rolling body, while introducing a particle swarm algorithm 

( PSO) is introduced to optimize the hyperparameters in the model to improve the prediction effect. The results show that the proposed 

hybrid PSO-CNN-SVM model is able to monitor and diagnose the electric spindle failure of a 5-axis machining centre with an 

accuracy of 99.33%. In comparison with the BP model, SVM model, CNN model and CNN-SVM model, the accuracy of the model 

increased by 10%, 6%, 4% and 2% respectively, which shows that the fault diagnosis model proposed in the paper can monitor the 

operation status of the electric spindle more effectively and diagnose the type of electric spindle fault, so as to improve the 

maintenance strategy. 
Keywords: five-axis machining centres; CNN-SVM; spindle vibration; fault diagnosis 

 

1 Introduction 

Five-axis machining centre is a high technology, 

high efficiency, low energy consumption in one of the 

high-precision machine tools, widely used in the complex 

space surface processing, its core key components failure 

of intelligent identification to enhance the overall level of 

equipment maintenance technology is of great 

significance. The electric spindle is directly driven by an 

electric motor instead of a pulley drive and gear drive, 

which can achieve high-speed and steady-state operation 

of the machine tool spindle, and is a key functional 

component of the five-axis machining centre, whose 

working condition directly affects the spindle rotation 

accuracy and product processing quality
[1]

. It is a key 

functional component of a five-axis machining centre. 

Therefore, effective monitoring and accurate diagnosis of 

spindle faults is essential. Monitoring means timely 

warning when a spindle fault occurs, and diagnosis means 

intelligent identification of the type of fault for accurate 

maintenance at a later stage. Fault detection and diagnosis 

models are used to monitor and mine the vibration signals 

of each fault in the spindle and to construct a non-linear 

correlation with the actual fault. In the early days, a large 

number of scholars used machine learning methods to 

build prediction models for intelligent maintenance of 

motorized spindle, such as BP neural networks 
[2]

,RBF 

neural networks
[3]

, Support vector machines (SVM)
[4]

 etc. 

Li Zhaolong 
[2]

 et al. collected temperature and axial 

thermal drift data of electric spindles at different 

rotational speeds, used fuzzy clustering and grey 

correlation analysis for feature extraction, and constructed 

a BAS-BP model to predict and compensate for the 

thermal errors of electric spindles, achieving better results. 

Shan Wentao 
[3] 

et al. proposed a block adaptive 

backstepping control method based on global RBF neural 

network. The backstepping control law and parameter 

update law were derived using Lyapunov theory to ensure 

the stability of the whole spindle system. C.K. 

Madhusudana 
[4] 

et al. collected vibration signals in the 

feed direction of the spindle in the healthy and faulty 

states of the milling cutter and used SVM models with 

different kernel functions to investigate and classify 
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selected features based on the discrete wavelet transform, 

and the results showed that spindle faults could be 

effectively diagnosed using this C- SVC model. Although 

the above-mentioned scholars have made some 

achievements using mechanical learning algorithms, the 

slow model fitting speed and low prediction accuracy 

have become urgent problems at this stage. 

With the application of sensor technology and the 

rise of deep learning algorithms, has become a new trend 

to use piezoelectric acceleration sensors to acquire 

electric spindle vibration signals and construct fault 

diagnosis models for monitoring by deep learning 

algorithms, such as recurrent neural networks (RNN) 
[5]

, 

long and short term memory networks (LSTM) 
[6]

 and 

Convolutional Neural Networks (CNN) 
[7] 

etc. These 

predictive models have more powerful feature learning 

and mapping capabilities and can automatically mine 

deeper features for prediction without a priori knowledge 

or the help of human experts. However, recurrent neural 

networks (RNN) are prone to gradient disappearance or 

gradient explosion when diagnosing spindle faults, and 

researchers have used Long and Short Term Memory 

Networks (LSTM) to predict spindle faults 
[8]

. 

Convolutional neural networks (CNNs) have been used 

for spindle fault monitoring and diagnosis in recent years 

because their convolution and pooling operations can 

improve the extraction of potential features in the hidden 

layer of the prediction model compared to LSTMs. 

Wen Long
[9]

 et al. proposed a CNN convolutional 

neural network for electric spindle bearing fault diagnosis, 

which can effectively perform fault monitoring, but there 

is still room to improve the accuracy of diagnosing 

specific fault types. This is due to the fact that when using 

a CNN diagnostic model to deal with functions with a 

high degree of non-linearity, the number of features 

output by the fully connected layer increases 

proportionally, reducing the generalisation capability of 

the model, which is not conducive to fault diagnosis of 

electric spindles. Support vector machines (SVMs), on 

the other hand, have an absolute advantage in dealing 

with non-linear data by using some kernel function to 

transform the input sample data from a low-dimensional 

space into a high-dimensional space, so that the originally 

non-linear data becomes linearly separable in the 

high-dimensional space
[10]

 It uses a kernel function to 

transform the input sample data from a low-dimensional 

space to a high-dimensional space, so that the originally 

non-linear data becomes linearly separable in the 

high-dimensional space. Therefore, the combination of 

SVM and CNN can make up for the shortcomings of the 

above CNN model. The essence is that CNN is used as a 

feature learner to explore the deep features of the input data, 

and SVM is used as a trainer to construct the optimal 

classification hyperplane for fault classification prediction. 

CNN-SVM is a multi-category diagnostic model 

proposed by combining convolutional neural network 

(CNN) and support vector machine (SVM) methods. Its 

model performance depends on the selection of model 

parameters, which include penalty parameters ρ  and 

kernel function width g, etc., and it is crucial to select the 

optimal parameter pairing to further improve the model 

performance. The current more common hyperparameter 

optimisation methods are random optimisation search 
[11]

 , 

gradient-based optimisation
[12]

, genetic algorithm 

optimisation
[13]

, Particle swarm optimization
[14]

et al. The 

PSO algorithm can perform global optimization with 

fewer parameters, and its powerful search performance 

and individual optimization capability can accelerate the 

convergence speed of the model, so it has been widely 

used and studied by scholars in recent years 
[15] 

.This is 

why it has been widely studied in recent years. 

In this paper, a hybrid CNN-SVM model based on 

particle swarm algorithm (PSO) optimisation is proposed. 

Firstly, the fully connected layer of the CNN model is 

replaced by a global average pooling layer to reduce the 

dimensionality of the output features and improve the 

generalisation capability of the model; secondly, the 

Softmax function of the CNN model is replaced by a 

support vector machine SVM classifier to complete the 

fault diagnosis of the electric spindle; finally, the 

hyperparameters in the SVM model are optimised using 

the PSO algorithm to derive the optimal solution to 

further improve the Finally, the PSO algorithm is used to 

optimise the hyperparameters in the SVM model and 

derive the optimal solution to further improve the fault 

diagnosis accuracy of electric spindles. 

2 Construction of a CNN-SVM-PSO fault 

diagnosis method 

To address the shortcomings of the CNN diagnosis 

model, this paper proposes a fault diagnosis model based 

on a CNN-SVM optimised by a particle swarm algorithm 

to identify the types of faults in the electric spindle system 

of a 5-axis machining centre. The improvements are:  

(1) The sample feature matrix is pre-processed using 

batch normalisation techniques and then input into the CNN 

model, which reduces the complexity of the model and 

improves the convergence speed of the network with its 

unique structure of local connectivity and weight sharing. 

(2) The fully connected layer of the CNN model is 

replaced by a global average pooling layer, and the 

features output after the convolution and pooling 

operations are reduced in dimensionality, which reduces 

the model parameters and lowers the training time of the 

SVM model. 

(3) The SVM model is suitable for classification 

tasks dealing with problems with high non-linearity and 

makes up for the shortcomings of the CNN model, so the 

SVM model is used instead of the Softmax classifier in 

the CNN to classify and predict the electric spindle fault 

types, thus improving the model generalisation capability. 

(4) Using the powerful search and global 

optimization-seeking capabilities of the PSO algorithm, 

the penalty parameter in the SVM modelρ and the two 
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parameters of kernel function width g are iteratively 

optimized to improve the accuracy of electric spindle 

fault diagnosis. The CNN-SVM-PSO fault diagnosis 

model is shown in Figure 1. 

 

Figure 1  CNN-SVM-PSO fault diagnosis model 

2.1 Acquisition of electric spindle vibration signals 

During the operation of a five-axis machining centre, 

the electric spindle system will generate violent vibrations 

when problems occur in the core components such as the 

rotating shaft, motor and bearings, which are manifested 

by the loose and unbalanced phenomenon of the rotating 

shaft and coupling, the eccentric phenomenon of the air 

gap of the motor, as well as the damage failure of the 

bearings and rolling bodies. By monitoring the vibration 

of the machine tool spindle system when the above core 

components are abnormal, it is found that the frequency 

range of the vibration signals of various faults are slightly 

different, as shown in Table 1, so the spindle fault can be 

diagnosed by extracting the features of each fault 

vibration signal and finding the correlation between the 

sample features and the actual fault
[16].

The sample 

features can then be correlated with the actual fault to 

diagnose the spindle fault. 

Table 1  Frequency range of core component failures 

Electric spindles 

Type of fault 
Frequency range Type of vibration 

Unbalanced and loose 

rotating shafts and couplings 

5 times 

Within working 

frequency 

Low frequency 

vibration 

Motor air gap eccentricity 

failure 

2x Power 

frequency 

Medium Frequency 

Vibration 

Bearings and rolling elements 

Injuries 
＞1KHz 

High frequency 

vibration 

The vibration information generated by the electric 

spindle system of the five-axis machining centre due to 

the above faults will be reflected in different ways, such 

as irregular fluctuations of the spindle motor current, the 

vibration of the outer casing of the spindle and the noise 

generated by the electric spindle system. The experiment 

is to use the 356A15 three-axis vibration acceleration 

sensor manufactured by PCB to monitor and collect the 

vibration signal generated by the outer casing of the 

spindle in real time under the high-speed rotating state of 

the electric spindle, the Measuring system models is 

shown in Figure 2, the Experimental equipment model 

parameters is shown in Table 2. 

 

Figure 2  Measuring system models 

Table 2  Experimental equipment model parameters 

Serial 

number 

Experimental 

equipment 
Model parameters 

1 
Five-axis machining 

centres 
SK5L-70100 i5M8 

2 Acceleration sensors 
PCB, 

Type 356A15 

3 
Data Acquisition 

Cards 

NI-DAQ, 

50HZ 

4 Output Connector BNC interface 

In this paper, the raw vibration signals of the electric 

spindle system are collected in real time according to the 

above scheme. A total of four tag states are collected: 

normal (set as tag 1), spindle fault (set as tag 2), motor 

fault (set as tag 3) and bearing fault (set as tag 4). The 

number of samples collected for each of the four tag 

states is 100, giving a total of 400 data. As the raw signal 

data set collected contains 3 channels of X-axis, Y-axis 

and Z-axis vibration signals, a raw signal matrix of 400 x 

3 is formed. 

2.2 Electric spindle fault feature extraction 

The instability of the five-axis machining centre 

electric spindle system at the moment of start/stop can 

interfere with the signal feature extraction, so the original 

signal needs to be processed for noise reduction. This 

experiment each acquisition signal data volume is about 

200000 or more, so extract each acquisition signal in the 

label for 50001 ～ 100000 data for research, in order to 

avoid the interference of the noise signal, to the normal 

state of the data set as an example, its noise reduction 

signal results are shown in Figure 3. 

 

Figure 3  Spindle vibration signal data after noise reduction 
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After noise reduction, the original vibration signal is 

extracted in the time domain, frequency domain and 

time-frequency domain. 13 time-domain features are 

extracted in total, including mean value, variance, cliff 

index, peak factor, etc.; 5 frequency-domain features are 

extracted, including frequency-domain amplitude mean 

value, mean square frequency, variance frequency, etc.; 

the time-frequency domain features are extracted mainly 

by using wavelet packet analysis to subdivide the original 

signal into different frequency bands, and the energy 

value of each frequency band is the extracted 

time-frequency domain features. The energy value of each 

frequency band corresponds to the type of electric spindle 

fault, so the energy value of the frequency band is the 

extracted time-frequency domain features, and the energy 

value of the frequency band is calculated by the formula: 

 𝐸𝑛 (𝑥(𝑡)) =
1

2−𝑘𝑁 − 1
∑ (𝑥𝑘,𝑚(𝑖))2                (1)

2𝑘−1

𝑚−0

 

where En denotes the total energy of the original 

signal, j denotes the number of layers of wavelet packet 

decomposition, andxk,m(i) denotes the number of layers 

in the subspace Uj−k
2k+m  of the signal x2k+m  of the 

decomposed signal. In this experiment, the number of 

layers of wavelet packet decomposition of the original 

signal is set to 3, which are all done by the db5 wavelet 

base. The frequency domain is divided into 8 frequency 

bands, as shown in Figure 4, so that 8 time-frequency 

domain features are extracted. Therefore, 26 features can be 

extracted for each channel signal. The features of all 

channels are fused to produce 78 eigenvalues and the matrix 

is reorganised to produce a 400 x 78 eigenmatrix, which is 

the input to the electric spindle fault diagnosis model. 

 

Figure 4  Frequency bands for wavelet packet 

decomposition 

2.3 Fault diagnosis principle of CNN-SVM-PSO model 

Firstly, the 400 x 78 sample feature matrix is 

reorganised using the batch normalisation technique; 

secondly, the sample data is input into the CNN model 

and passed into the global average pooling layer for 

feature dimensionality reduction after two successive 

convolution and pooling operations; finally, the reduced 

dimensional feature vector is passed into the SVM model 

optimised by the PSO algorithm for electric spindle fault 

diagnosis. The specific fault diagnosis principle is as follows:  

According to the above, the 400×78 sample feature 

matrix was derived from the feature extraction of the 

original vibration signals of the four labels in the time 

domain, frequency domain and time-frequency domain, 

and the above feature matrix was batch normalized to 

avoid the occurrence of overfitting due to gradient 

dispersion, and the processing formula for batch 

normalization was 

𝑋𝑛 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
                                  (2) 

where X  denotes the sample for each feature, 

andXmin  denotes the minimum value of each feature, 

andXmax denotes the maximum value of each feature. 

The sample information is indirectly characterized 

by the weight value of each layer derived from the 

convolution operation, the higher the layer, the more 

detailed the local features are extracted, and the spatial 

continuity of the sample is maintained
[17]

 .The 

convolution operation is given by 

𝑋𝑖
𝑘 = ∑ 𝑊𝑖

𝑘𝑗
⨂𝑋𝑖−1

𝑗
+ 𝑏𝑖

𝑘                        (3)𝑛
𝑗=1   

where Xi
k  denotes the feature matrix of the kth 

neuron at the output of the ith layer, and𝑊𝑖
𝑘𝑗

 denotes the 

weight value of the kth neuron at layer i, and⨂ denotes 

the convolution operator, and𝑋𝑖−1
𝑗

 denotes the feature 

matrix of the jth neuron at the output of layer i-1, andbi
k 

is the bias coefficient of the kth neuron in layer i. 

In order to improve the fault diagnosis performance of 

the prediction model, the CNN model uses ReLU function 

for non-linear activation, which has good non-saturation 

characteristics and avoids the gradient disappearance 

phenomenon. The activation function is as follows: 

𝑉𝑖
𝑘 = 𝑅𝑒𝑙𝑢(𝑋𝑖

𝑘) = {
0, 𝑥𝑖

𝑘 < 0

𝑥𝑖
𝑘 , 𝑥𝑖

𝑘＞0
                     (4) 

Where 𝑥𝑖
𝑘  is the value of the𝑋𝑖

𝑘  the respective 

eigenvalues in the feature matrix. 

The pooling type is chosen to be maximum pooling, 

which preserves the original features and reduces the 

parameters of network training, improving the robustness of 

the extracted features. The maximum pooling formula is: 

𝐶𝑖
𝑘(𝑠, 𝑡) = 𝑀𝑎𝑥

1+(𝑠−1)𝑄≤𝑑≤𝑠𝑄
1+(𝑡−1)𝑃≤ℎ≤𝑡𝑃

{𝑉𝑖
𝑘(𝑑, 𝑕)}                 (5) 

where𝑉𝑖
𝑘(𝑑, 𝑕) is the eigenvalue of column h of row 

d of the ith eigenmatrix input to the pooling layer, 

and𝐶𝑖
𝑘(𝑠, 𝑡) is the eigenvalue of the sth row t column of 

the ith feature matrix obtained after pooling, and P and Q 

are the length and width of the pooled region, respectively. 
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The feature matrices of dimension S × T, which are 

derived from each row of the 400 × 78 sample feature 

matrix after two convolution and pooling operations, are 

fed into the global average pooling layer. The 

dimensionality of the pooling kernel of the global average 

pooling layer is kept consistent with the dimensionality of 

the feature matrix, and the n feature matrices are 

dimensionalized to output a feature vector Xr = {x1 , 

x2 , ... , xi , ... , xn , }, where xi is given by the formula 

𝑥𝑖 =
1

𝑆𝑇
∑∑𝐶𝑖

𝑘(𝑠, 𝑡)                               

𝑇

𝑡=1

(6)

𝑆

𝑠=1

 

The feature vector output from the global average 

pooling layer is used as input to the SVM support vector 

machine model. The greatest advantage of the SVM 

algorithm is that the number of features in a dataset has 

essentially no effect on its model complexity, making it 

particularly suitable for classification tasks with relatively 

large datasets of features, and the mathematical model of 

the SVM is  

{
 

 𝑚𝑖𝑛 
1

2
‖𝑤‖ + 𝜌∑𝜉𝑟

𝐿

𝑟=1

𝑠. 𝑡. 𝑦𝑟(𝑤𝑋𝑟 + 𝑏) + 𝜉𝑟 ≥ 1, 𝑟 = 1,2，⋯，𝐿

         (7) 

where w is the normal vector to the hyperplane, 

andρ is the penalty parameter, the ξr is the relaxation 

factor, b is the offset coefficient, andXr is the feature 

vector of the rth sample, the yr is the fault class, L is the 

total number of feature samples, and the total number of 

samples in this paper is 400. 

The model in Eq. (7) is mostly used to deal with 

linearly divisible sample characteristics data, but the 

electric spindle fault sample data is linearly indivisible, so 

it is necessary to introduce the kernel function to 

up-dimension each labeled sample data. In this paper, the 

Gaussian radial basis kernel function is used to transform 

the non-linear data of each labeled state into linear data in 

high dimensional space to make the analysis possible, and 

then the optimal classification hyperplane is constructed 

based on the principle of maximizing the classification 

interval to complete the fault diagnosis task, and its 

Gaussian radial basis kernel function formula is 

𝐾(𝑋) = 𝑠𝑔𝑛 (∑𝑎𝑟
∗

𝐿

𝑟=1

𝑦𝑟𝑒𝑥𝑝 (−
‖𝑋𝑟 − 𝑋‖

2

2𝑔2
) + 𝜃∗)    (8) 

where sgn is the sign function, ar
∗ is the Lagrangian 

multiplier, g is the kernel function width, and X is the 

sample label data, and θ∗ is the configuration factor. 

The five-axis machining centre spindle fault 

diagnosis has a total of four label states, in essence a 

multi-classification problem. In the fault diagnosis of the 

sample, each classifier scores the four label states and the 

label with the highest score is the final result of the fault 

diagnosis. The penalty parameterρ and kernel function 

width g directly affect the training speed and prediction 

accuracy of the model, so how to find the optimal ρ , g 

parameter pairing is the key to SVM model classification 

prediction 
[18]

. This paper uses the PSO algorithm to 

perform the SVM classification prediction. In this paper, 

the PSO algorithm is used to optimise the 

hyperparameters in the SVM model to derive the optimal 

solution, and its PSO algorithm optimisation search 

process is shown in Figure 5. 

 

Figure 5  PSO algorithm optimisation process 

2.4 Fault diagnosis process with CNN-SVM-PSO model 

The process of electric spindle fault diagnosis based 

on CNN-SVM-PSO model mainly includes the following 

six stages: sample feature extraction, division of data set, 

training CNN model, training SVM model, optimization 

of model parameters and fault type diagnosis. The basic 

process is shown in Figure 6:  

(1) Sample feature extraction: The original signals of 

the 3 channels related to the electric spindle vibration are 

extracted in the time domain, frequency domain and 

time-frequency domain respectively to form a sample 

feature matrix. 

(2) Division of data set: The above sample matrix is 

normalized, the processed feature parameters are the 

model input, the four label states of the electric spindle 

are the model output, and the training data set and the test 

data set are randomly divided, with the ratio of training 

data set to test data set being 5:3. 
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Figure 6  CNN-SVM-PSO fault diagnosis flowchart 

(3) Training the CNN model: build a convolutional 

neural network and train it using the training and test sets 

from step 2. After two convolutional and pooling 

operations reduce the training time of the SVM by 

globally averaging one feature vector output from the 

pooling layer to form a new training and test set; 

(4) Training the SVM model: train the SVM model 

with the training set formed in step 3, select the Gaussian 

radial basis kernel function as the basis function of the 

SVM classifier, initialize the penalty parametersρ and 

kernel function width g.  

(5) Model parameter optimization: Iterative 

optimization of the hyperparameters of the SVM model 

based on the training data set using the PSO algorithm to 

find the optimal c and g parameter pairing to improve the 

training speed and prediction accuracy of the model 

(6) Fault type diagnosis: The test set formed with 

step 3 is input to the trained SVM model to identify the 

data fault type and provide a reference for electric spindle 

fault repair and troubleshooting. 

3 Experimental analysis of electric spindle 

fault diagnosis 

3.1 Setting of diagnostic model parameters 

In this experiment, a 400×78 sample feature matrix 

was generated after feature extraction, corresponding to 

four labeled states, namely normal state (label 1), spindle 

fault (label 2), motor fault (label 3) and bearing fault 

(label 4). The CNN-SVM-PSO model was constructed by 

randomly disrupting the feature matrix and then batch 

normalising it to construct a training set and a test set, of 

which the number of training sets was 250 and the 

number of test sets was 150.ρ and the kernel function 

width g, both of which were set between 0 and 5, were 

selected as the target of the optimization process. To 

avoid interference from other factors, the number of 

particle swarm individuals in the PSO algorithm was set 

to 15 and the maximum number of iterations was set to 

150, with the specific parameters shown in Table 3. 

Fifteen optimisation operations were carried out 

according to the parameters in Table 3, and the average 

value was taken as the final result, where the penalty 

parameterρ was 0.401 and the kernel function width g 

was 1.215. The optimizedρ , g parameters were migrated 

to the CNN-SVM model to complete the four label fault 

diagnosis. 

Table 3  Initial parameter settings for the PSO algorithm 

PSO algorithm parameters Parameter values 

Number of individuals in the particle population 15 

Maximum number of iterations 150 

Acceleration factors c1, c2 1.3, 1.5 

Inertia factor 0.5 

Particle vector dimension 2 

3.2 Selection of diagnostic model evaluation indicators 

In order to quantify the results of electric spindle 

fault diagnosis, this paper selects Precision, Accuracy, 

Recall and F1-score values as the evaluation 

indexes
[19]

The formulae for the calculation of Precision, 

Accuracy, Recall and F1-score are as follows 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                (9) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                (10) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                  (11) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
                  (12) 

In the above equation, the values of TP, TN, FP and 

FN can all be found in the confusion matrix, which is 

shown in Table 4 for the dichotomy example. 

Table 4  Confusion matrix 

 
True value 

Normal Fault 

Predicted value 
Normal TP FP 

Fault FN TN 
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3.3 Electric spindle fault diagnosis results 

This experiment takes the electric spindle of a five-axis 

machining centre as the research object, and uses the 

acceleration sensor to detect the vibration signals of four label 

states in real time, and forms the sample data after feature 

extraction, normalised and input to the CNN-SVM-PSO fault 

diagnosis model for fault identification, and the fault 

identification results of the training set obtained are shown in 

Figure 7, and it can be found that only 1 sample out of 250 

training samples, The fault identification results of the test 

samples are shown in Figure 8, and it can be found that only 1 

sample out of 150 test samples was diagnosed incorrectly, 

with an accuracy rate of 99.33%. The results show that the 

CNN-SVM-PSO model has a good effect in the diagnosis of 

electric spindle faults. 

 

Figure 7  Training set spindle fault prediction results 

 

Figure 8  Test set spindle failure prediction results 

The confusion matrix of the CNN-SVM-PSO model 

electric spindle fault diagnosis test set is shown in Figure 

9. It can be seen that the test set contains 36 samples of 

normal state (label 1), spindle fault (label 2) 40, motor 

fault (label 3) 32 and bearing fault (label 4) 42, total 

150 samples. In the diagnosis of the spindle fault (tag 

2), one sample was incorrectly classified as a motor 

fault (tag 3), with an accuracy rate of 97.5%; no errors 

were found in the diagnosis of normal condition (tag 1), 

motor fault (tag 3) and bearing fault (tag 4), with an 

accuracy rate of 100%. 

The evaluation index of electric spindle fault 

diagnosis can be calculated through the confusion matrix, 

and the results of the evaluation index of its four state 

labels are shown in Table 5. For the accuracy rate index, it 

can be seen that the accuracy rate of the spindle fault is 

the lowest, but it also reaches 97.5%, and all other states 

can reach 100%, which achieves a better result; for the 

correct rate index, it can be seen that the accuracy rate of 

all three wear states is 99.33%, which is consistent with 

the previous analysis; for the recall rate index, it can be 

seen that only the recall rate of the motor fault (label 3) 

does not reach For the F1 value metric, it can be seen that 

the minimum value of F1 for the four fault types is 0.985, 

which is close to 1. These four results further validate the 

superiority of the CNN-SVM-PSO model in the diagnosis 

of electric spindle faults. 

 

Figure 9  Fault diagnosis confusion matrix 

Table 5  Results of the four fault diagnosis evaluations 

Label Classification Precision Accuracy Recall rate F1 value 

1 100% 99.33% 100% 1 

2 97.5% 99.33% 100% 0.987 

3 100% 99.33% 97% 0.985 

4 100% 99.33% 100% 1 

In order to further verify the identification effect of 

the CNN-SVM-PSO electric spindle fault diagnosis 

model, the prediction effect was compared with other 

traditional fault diagnosis models in the past, such as BP 

neural network, CNN model, SVM model and CNN-SVM 

model, and the prediction results of these four traditional 

electric spindle fault diagnosis models are shown in Figure 

10. From Fig. 8 and Fig. 10, it can be seen that the 

prediction effects of the five electric spindle fault diagnosis 

models are ranked as CNN-SVM-PSO ＞ CNN-SVM ＞ 

CNN ＞ SVM ＞ BP. It can thus be seen that the hybrid 

CNN-SVM model based on the optimization of PSO 

algorithm proposed in this paper has obvious advantages in 

electric spindle fault diagnosis, which is due to the ability 

in the CNN-SVM-PSO model to deep mining of data 

hidden layer features with high nonlinearity and 

comprehensive feature extraction, and the PSO algorithm is 

able to perform a deep mining of the penalty parameter in 

the SVM support vector machineρ The PSO algorithm is 

able to find the optimal pairing of two hyperparameters in 

the SVM support vector machine and the kernel function 

width g, which avoids the blindness of setting parameters 

and thus improves the accuracy of the prediction model. It 

is calculated that the CNN-SVM model optimized based on 
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the PSO algorithm improves the accuracy by 2% over the 

traditional CNN-SVM model. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 10  Prediction results of the four traditional models 

(a) BP model. (b) CNN model. (c) SVM model. (d) CNN-SVM model 

Table 6 shows the performance comparison results 

of the five electric spindle fault diagnosis models. The 

number of diagnostic error samples of BP model, SVM 

model, CNN model and CNN-SVM model are 16, 10, 7 

and 4 respectively, and their accuracy rates are 89.33%, 

93.33%, 95.33% and 97.33% respectively. In contrast, the 

CNN-SVM-PSO model proposed in this paper diagnosed 

only one wrong sample and the accuracy rate was as high 

as 99.33%, which improved the accuracy index by 10%, 

6%, 4% and 2% respectively compared with the above 

four traditional models. This shows that under the 

conditions of consistent samples and the same number of 

samples, the prediction accuracy of the hybrid CNN-SVM 

model based on the optimised PSO algorithm for electric 

spindle fault diagnosis is significantly higher than the 

other models, and its generalisation ability is stronger and 

the network fitting speed is faster, which indirectly 

indicates that using the CNN-SVM-PSO model for 

electric spindle fault diagnosis is more accurate and can 

provide a reference for electric spindle fault repair and 

troubleshooting. This indirectly indicates that the 

CNN-SVM-PSO model is more accurate for electric 

spindle fault diagnosis and can provide a reference for 

electric spindle fault repair and troubleshooting. 

Table 6  Performance comparison results of the five 

diagnostic models 

Algorithm 

Number of misidentified samples 

Accuracy Normal 

Status 

Bearing 

failures 

Spindle 

failure 

Motor 

failure 

BP Neural 

Network 
1 5 9 1 89% 

SVM Algorithms 0 2 3 5 93% 

CNN Algorithms 0 2 3 2 95% 

CNN-SVM 

algorithm 
1 1 2 0 97% 

CNN-SVM-PSO 

algorithm 
0 1 0 0 99% 

4 Conclusion 

In this paper, a CNN-SVM fault diagnosis model 

based on PSO algorithm optimisation is proposed to 

classify and predict four labeled states: normal state, 

spindle fault, motor fault and bearing fault of an electric 

spindle, taking the electric spindle of a five-axis 

machining centre as the experimental object. The model 

uses a convolutional neural network (CNN) model as a 

deep feature miner and a support vector machine (SVM) 

as a fault state classifier to complete the diagnosis of 

electric spindle fault types. In order to improve the 

prediction accuracy of the model, the powerful search 

capability of the particle swarm algorithm (PSO) is used 

to search for the superparameters in the model. The 

results show that: 

(1) The best hyperparameter pairing for the 

CNN-SVM electric spindle fault diagnosis model was 

found by the PSO algorithm, where the penalty 

parameterρ is 0.401 and the kernel function width g is 
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1.215, which reduces the subjective influence of manual 

parameter selection and avoids the blindness of setting 

parameters, thus improving the diagnostic accuracy. 

(2) The CNN-SVM-PSO model can effectively 

monitor and diagnose the common types of faults in 

electric spindle systems, and its diagnostic accuracy 

reaches 99.33%. 

(3) Under the same conditions, the diagnostic 

performance of the CNN-SVM-PSO model proposed in 

this paper was compared with the BP model, CNN model, 

SVM model and CNN-SVM model, and the results 

showed that the model constructed in the paper has 

obvious advantages in electric spindle fault diagnosis, and 

its accuracy indexes were improved by 10%, 6%, 4% and 

2% respectively. 

In the future, this CNN-SVM-PSO electric spindle 

fault diagnosis model can be widely used in the fields of 

spindle fault diagnosis and intelligent operation and 

maintenance of CNC machine tools in various factories. 

By monitoring the vibration signal of the electric spindle in 

real time, it is of practical significance to achieve early 

warning and display the type of fault when the vibration signal 

is abnormal, providing reference advice to maintenance 

personnel and improving maintenance efficiency. 
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Abstract: 

In order to predict the remaining service life of brake pads accurately and efficiently, and to achieve intelligent warning, this paper 

proposes a CNN-LSTM brake pad remaining life prediction model based on an attention mechanism. The model constructs a 

non-linear relationship between brake pad features such as brake temperature, brake oil pressure and brake speed and brake pad wear 

data through convolutional neural network (CNN) and long and short term memory network (LSTM), as well as capturing the time 

dependence that exists in the brake pad wear sequence. The attention mechanism is also introduced to assign different weight values to 

the features output from multiple historical moments, highlighting the features with high saliency and avoiding the influence of invalid 

features, so as to improve the prediction effect of the remaining brake pad life. The results show that the proposed 

CNN-LSTM-Attention model can effectively predict the remaining life of brake pads, with the mean absolute error MAE value of 

0.0048, root mean square error RMSE value of 0.0059 and coefficient of determination R2 value of 0.9636; and compared with the BP 

model, CNN model, LSTM model and CNN-LSTM model, the coefficient of determination R2 values are closest to 1, with an 

improvement of 8.26%, 5.25%, 3.99% and 1.85% respectively, enabling more effective monitoring and intelligent warning of the 

remaining brake pad life. 
Keywords: attention mechanism; CNN-LSTM; brake pads; life prediction 

 

1 Introduction 

As people's living standards improve, the number of 

cars owned increases, and so does the probability of 

traffic accidents. As one of the important protection 

devices for safe driving, car brakes are of great concern, 

and their performance directly affects the personal safety of 

people driving cars. During the braking process, the brake 

pads and the brake discs produce relative motion, which 

instantly generates great temperature and friction, and the 

surface of the brake pads is prone to wear due to chemical 

reactions under high temperature and pressure. Therefore, 

it is necessary to make accurate life prediction and health 

management of the brake pads, so that the management 

system can make intelligent alarm according to the 

prediction result and remind the driver to replace the brake 

pads in time, thus avoiding major traffic accidents. 

At the same time people's requirements for the 

reliability and safety of cars are getting higher and higher, 

and new requirements for the failure mechanisms, and 

diagnostic techniques of vehicle braking systems have 

been put forward, and the research literature on vehicle 

braking system fault diagnosis is becoming increasingly 

rich. Deng Fengman et al. based on fuzzy theory for 

hydraulic brake system fault diagnosis, the accuracy of 

the constructed ARX-RBQ diagnosis model is 92%, 

indicating that the use of the model can basically 

complete the fault diagnosis of hydraulic brake system 
[1]

 . 

However, the research on the remaining life prediction 

and intelligent warning of brake pads in vehicle braking 

system is very limited, and the early prediction is mainly 

for the design life of brake pads using theoretical or 

experimental methods to verify. Hao Mingshu et al. used 

the Manson-Coffin equation to predict the thermal fatigue 

life of disc brakes by studying the temperature and stress 

fields of disc brakes and deriving the average equivalent 

force at the hazardous parts of the disc 
[2]

. 

The mid-to-late stage prediction mainly uses 

machine learning methods to extract and train features 

from the collected raw data, simulate the whole process of 

system degradation, and compare the current working 

state with historical data to complete the prediction of 

remaining life. The most commonly used machine 

learning methods mainly include BP neural networks 
[3]

, 

artificial neural networks (ANN) 
[4]

, Support vector 

machines (SVM) 
[5]

 etc. However, machine learning 

methods do not dig deep into the hidden information of 
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the data and do not consider the intrinsic correlation of 

the time series, which still needs to be improved. 

In recent years, deep learning theory has emerged in 

the field of residual life prediction, which is able to 

extract deep features from complex data and combine 

them with time series information to predict residual life 

compared to traditional mechanical learning techniques 
[6]

. 

The most commonly used deep learning algorithms 

include recurrent learning. The most commonly used deep 

learning algorithms include recurrent neural networks 

(RNN), long and short-term memory networks (LSTM) 

and convolutional neural networks (CNN). 

Recurrent neural networks (RNNs) can handle time 

series data and can remember the intrinsic connections 

between systems in time steps, but are prone to gradient 

explosion or gradient disappearance and can only handle 

short-term memory problems 
[7]

. Long Short Term 

Memory Networks (LSTM) can solve these problems by 

not only handling long term memory, but also by linking 

past and future time series 
[8]

. Recently, work on the 

prediction of the remaining life of brake pads based on 

LSTM has been gradually carried out by Xu Meng The 

results show that the VMD-Bi LSTM model can meet the 

requirements of brake pad life prediction
[9]

. However, the 

prediction accuracy and precision of the LSTM network 

is not high for the time series with stronger non-linearity 

and more prominent non-smoothness 
[10]

. 

In order to obtain better prediction results in the field 

of time-series data prediction, Riemer et al. proposed a 

neural network based on an attention mechanism for 

multi-source time-series data 
[11]

. The input attention 

mechanism is introduced in the encoder stage to filter more 

relevant features for prediction, and the temporal attention is 

introduced in the decoder stage to extract the long-term time 

dependence of time series, thus avoiding the influence of 

invalid features and improving the model accuracy 
[12]

. 

Convolutional neural networks (CNNs) are also 

widely used in various models for lifetime prediction 

because their convolution and pooling operations can 

improve the ability to mine potential features of complex 

data in prediction models compared to long and 

short-term memory networks (LSTMs) 
[13]

. However, 

CNN networks are only able to extract the most important 

features of the data. However, CNN networks can only 

extract spatial features of brake pad wear and avoid 

temporal information, which leads to incomplete 

extraction of brake pad wear prediction features and 

reduced accuracy and efficiency of prediction
[14]

. 

Therefore, it has become an inevitable trend to combine 

CNN models with LSTM models. 

The wear of automotive brake pads is a process of 

gradual degradation over time, which is by nature an 

asymptotic, non-linear and non-stationary time series with 

a severe dependence on time. Therefore, based on 

machine vision, feature extraction, deep learning, 

attention mechanism and other techniques, this paper 

proposes a CNN-LSTM brake pad remaining life 

dynamic evaluation method based on attention 

mechanism improvement, using CNN model to mention 

mining potential deep features in space and capturing 

time series information in time through LSTM model, so 

that the temporal features and spatial features of the data 

can be fully utilized. thereby improving the accuracy of 

brake pad wear prediction. Finally, an attention 

mechanism is introduced to deal with the difference in 

importance of the CNN-LSTM output features to enhance 

the influence of important time-series features in the 

model, avoid memory loss and gradient dispersion caused 

by too long a step, and improve the model prediction 

effect. The research of this method will propose a new 

theory and method for the prediction of the remaining life 

of brake pad wear, laying a theoretical foundation and 

scientific basis for improving the development of China's 

automobile manufacturing industry and automobile 

maintenance industry. 

2 Life estimation options for automotive 

brake pads 

The braking principle of a car is to use the friction 

between the brake pads and the brake disc to convert the 

kinetic energy of the car moving forward into the heat 

energy after friction, thus stopping the car. As shown in 

Figure 1, when the car brakes, the caliper piston pushes 

the brake pad under the action of hydraulic fluid, and the 

brake pad and the brake disc come into contact with each 

other to produce sliding friction, which eventually holds 

the brake disc to stop the car. Most of the brake pads are 

made of polymer-based composite materials, so this paper 

uses the quantitative calculation of wear of composite 

materials as a reference to estimate the wear of brake pads 

and obtains the following equation: 

∆H = αPaVbtc                                    (1) 

where∆H is the amount of wear generated during 

the braking process of the car brake pad, P is the oil 

pressure of the hydraulic oil pushing the piston, V is the 

relative velocity between the brake pad and the brake pad, 

t is the friction time during the braking process, andα  is 

the compensation coefficient of brake pad wear, a, b and c 

are the indices of brake oil pressure, braking speed and 

braking time respectively. 

 

Figure 1  Structure of a car brake 
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During the braking process, the brake pads and brake 

discs generate a lot of heat in contact with each other, 

causing a chemical reaction on their surface resulting in 

wear. If we consider the frictional heat generated by the 

chemical reaction, the frictional heat coefficient is θ, 

the∆HV In order to consider the amount of wear on the 

brake pads of the car after the chemical reaction, we are 

able to derive the following formula: 

∆𝐇𝐕 = ∆𝐇 ∗ 𝛉 = 𝛂𝛉𝐏𝐚𝐕𝐛𝐭𝐜                    (𝟐) 

Four parametric correction equation according to the 

Arrhenius formula: 

θ = β(T T0⁄ )ne−E/RT                                  (3) 

where β, n is a constant; E is the activation energy 

generated by friction between the brake pad and the brake 

disc; R is the molar gas constant; T is the real-time 

temperature of the brake pad; T0 is the initial temperature 

of the brake pad; and 

It is therefore possible to derive an equation for the 

amount of brake pad wear after taking into account the 

chemical reaction: 

∆HV = ∆H ∗ θ = αθP
aVbtc = αβPaVbtc(T T0⁄ )ne−E/RT   (4) 

The above equation shows that the real-time 

temperature of the brake pads, the oil pressure of the 

hydraulic fluid pushing the piston and the relative speed 

between the brake pads and the brake pads are all decisive 

factors in the wear of the car's brake pads. 

3 Construction of a method for predicting the 

remaining life of brake pads 

In order to improve the accuracy and precision of the 

brake pad remaining life prediction model, this paper 

proposes a life prediction model based on the improved 

CNN-LSTM with attention mechanism, which outputs the 

wear value of the brake pad by detecting the braking 

speed, braking pressure and braking temperature, so as to 

calculate the remaining thickness of the brake pad 

according to the initial amount of the brake pad, and will 

generate a failure alarm prompt when the remaining 

thickness exceeds the wear threshold, with The 

improvements are:  

(1) The extracted braking speed, brake oil pressure and 

brake temperature features are batch normalised to improve 

the generalisation capability of the model, avoid over-fitting 

and improve the convergence speed of the model. 

(2) The unique structure of the CNN model with 

local connectivity and weight sharing allows the 

complexity of the network to be reduced, and the spatial 

continuity of the sample features is maintained after 

convolution and pooling operations. 

(3) The Long Short Term Memory Network (LSTM) 

is a further optimisation of the traditional RNN network, 

capable of handling longer time series data while 

avoiding gradient disappearance or gradient explosion 

phenomena. 

(4) The introduction of the Attention mechanism can 

handle the importance variability of the CNN-LSTM 

output features, complete with the assignment of different 

weight values to avoid the influence of invalid features 

and improve the model accuracy. Its 

CNN-LSTM-Attention brake pad remaining life 

prediction model is shown in Figure 2. 

 

Figure 2  CNN-LSTM-Attention remaining life 

prediction model 

3.1 Construction of the sample data set 

Braking speed refers to the relative speed of sliding 

friction between brake pads and brake pads. The relative 

speed is measured by the speed sensor. In this paper, 

according to the national road safety regulations, the 

vehicle speed is controlled between 40km/h and 120km/h, 

so the extracted braking speed range is 354r/min to 

1061r/min. Brake oil pressure refers to the hydraulic oil 

pressure that the piston pushes the brake pad to lock the 

brake disc. The pressure of the hydraulic oil to push the 

piston is extracted through the hydraulic pressure sensor. 

In this paper, according to the relevant requirements of 

the automobile brake performance, the brake pressure is 

controlled at 0.8Mpa to 1.6Mpa; Braking temperature 

refers to the instantaneous temperature generated by the 

friction between brake pads and brake discs. Real-time 

temperature of brake pads is extracted by temperature 

sensor, and the extracted temperature ranges from 47.4℃ 

to 84.7℃. The braking parameters are shown in Table 1. 

Table 1  Selection range of braking parameters 

Braking parameters Sensors Parameter range 

Braking speed Speed Sensors 
354r/min to 

1061r/min 

Brake oil pressure 
Oil pressure 

Sensors 
0.8Mpa to 1.6Mpa 

Braking 

temperature 

Temperature 

Sensors 
47.4°C to 84.7°C 

In this paper, the raw data of the above three braking 

parameters and the wear of the brake pads after braking 

are extracted separately, but the wear of the brake pads 

after a single braking is small and difficult to measure, so 

the braking feature extraction experiments are conducted 

every ∆t time. In this experiment, the number of braking 

cycles in ∆ t time was set to 300, and the braking 

parameters were kept constant, so each feature extraction 

experiment was able to obtain three time-domain features: 

braking speed, braking oil pressure and braking 

temperature. A total of 50 feature extraction experiments 

were carried out, so a 50 x 3 feature sample matrix can be 
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derived, which is the input to the brake pad residual life 

prediction model; at the same time, the thickness of the 

brake pad before and after braking in ∆t time is measured, 

and the difference is divided by the number of braking 

times to determine the amount of brake pad wear after 

each braking, so a 50 x 1 target sample matrix can be 

derived, which is the output of the brake pad residual life 

prediction model. This matrix is the output of the brake 

pad residual life prediction model. 

In order to improve the generalization ability of the 

prediction model and to find out the degree of influence 

of the three braking parameters on brake pad wear, the 50 

x 3 feature sample matrix and the brake pad wear values 

obtained above were normalized by the normalization 

process formula: 

𝑋𝑛 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
                              (5) 

Where  X is the sample of each feature, and Xmin 

is the minimum value of the sample feature, and Xmax is 

the maximum value of the sample feature. 

Figure 3 shows the effect of each braking parameter 

on brake pad wear after normalisation. From Figure 3, it 

can be seen that, according to the experiment conducted in 

accordance with the above requirements, with the increase 

of braking speed, braking pressure and braking temperature, 

the wear of automobile brake pads all course upwards; 

however, braking speed and braking temperature have a 

greater effect on brake pad wear, while braking pressure 

has no significant effect on brake pad wear. 

 
(a) 

 
(b) 

 
(C) 

Figure 3  Effect of braking parameters on brake pad 

wear.(a) Effect of braking speed on the amount of wear.(b) 

Effect of braking pressure on the amount of wear.(c) 

Effect of braking temperature on the amount of wear 

3.2 Prediction principles of CNN-LSTM-Attention 

models 

3.2.1 Convolutional Neural Networks (CNN) 

The CNN convolutional neural network proposed by 

LeCun Y et al. is a typical representative of deep learning 

and is widely used for processing spatial features 
[15]

. In 

this paper, CNN convolutional neural networks are used 

to extract the local correlation features between the 

sample data of the braking system and the wear and tear 

values in the target samples, and remove the unstable 

information and noise while maintaining the spatial 

continuity of the samples, resulting in a high-dimensional 

feature matrix as the input to the LSTM network, which is 

based on the following principles: 

(1) Convolution operations are performed on the 

batch normalised sample matrix by using a convolution 

kernel of suitable dimensionality to abstractly represent 

the brake pad wear features in space. Let the jth feature 

data output from layer i-1 be Xi−1
j

 , and in order to improve 

the prediction accuracy of the model, this paper chooses 

the Relu  function as the activation function, and its 

convolution operation can be represented by equation (6): 

𝑉𝑖
𝑘 = 𝑅𝑒𝑙𝑢(𝑊𝑖

𝑘𝑗
⊛𝑋𝑖−1

𝑗
+ 𝑏𝑖

𝑘)                  (6) 
where Vi

k is the kth feature data output from the 

next layer after the convolution operation, and Wi
kj

 is the 

weight value of the convolution kernel, and ⊛ is the 

convolution operator, andbi
k  is the bias value of the 

feature data in the next layer. 

(2) The purpose of pooling is to reduce the 

dimensionality of the feature samples while keeping the 

number of features unchanged to avoid overfitting. Take 

the ith feature matrix as an example, let the input feature 

matrix of the pooling layer be Vi
k(s, t) and its matrix 

dimension is s × t. The i-th feature matrix obtained after 

pooling is Ci
k(m, n) , whose dimension is m × n, then the 

maximum pooling operation can be expressed by 

equation (7): 

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9

The effect of braking speed on the amount of wear 

Braking speed Brake pad wear

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5

The effect of braking pressure on the amount of wear 

Brake pressure Brake pad wear

0

0.2

0.4

0.6

0.8

1

1.2

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

The effect of braking temperature on the amount of 
wear 

Brake temperature Brake pad wear



 

34                                                                         Mechanical Engineering Science  Vol. 4  No.2  2022 

𝐶𝑖
𝑘(𝑚, 𝑛) = 𝑀𝑎𝑥

1+(𝑚−1)𝑄≤𝑠≤𝑚𝑄
1+(𝑛−1)𝑃≤𝑡≤𝑛𝑃

{𝑉𝑖
𝑘(𝑠, 𝑡)}             (7) 

where P is the length of the pooling window and Q is 

the width of the pooling window. 

(3) Each sample in the 50×3 feature matrix is 

subjected to two convolution and pooling operations, and 

is able to produce j feature matrices of dimension m×n. 

The above feature matrix is subjected to PCA 

dimensionality reduction to reduce the covariance of the 

sample features and avoid the influence of redundant 

features, thus reducing the training time of the LSTM 

long and short-term memory network, so that the whole 

CNN model finally outputs a feature vector Xt = {x1 , 

x2 , ... , xi , ... , xj , } 

3.2.2 Long Short Term Memory (LSTM) Network 

CNN convolutional neural networks are able to mine 

local spatial features related to brake pad wear, but it is 

difficult to extract longer time series data, so this paper 

uses LSTM long and short term memory networks to 

further process the feature vectors output from CNN 

models to construct the link between sample features and 

time series. lstm networks were proposed by Hochreiter 

and Schmidhuber in 1997 proposed in 1997
[16]

 , the 

principle of which is as follows: 

(1) Through the forgetting doorft The state of the 

previous level of units Ct−1  Performing forgetting or 

memory processing; 

(2) By input gateit The input sample features areXt 
A logical calculation is performed to update the memory 

of the whole system, which is transmitted according to the 

path set by the system to generate a new memory 

featureCt The calculation of the new memory feature Ct 

constructed by the input gate and the forgetting gate can 

be expressed in equation (8): 

𝐶𝑡 = 𝑓𝑡⊗𝐶𝑡−1 + 𝑖𝑡 ⊗ 𝑡𝑎𝑛𝑕(𝐻𝑡−1)              (8) 

(3) Output gatesot Memory featuresCt The timing 

features are output by a control operationHt and transfer 

to the next layer of cells, the timing characteristicsHt The 

calculation can be expressed in equation (9): 

𝐻𝑡 = 𝑜𝑡 ⊗ 𝑡𝑎𝑛𝑕(𝐶𝑡)                            (9) 

Following the above principle is able to extract the 

temporal features of the samples, and its LSTM network 

structure is shown in Figure 4. 

 

Figure 4  LSTM network gate cell structure 

3.2.3 LSTM model based on attention mechanism 

The CNN-LSTM model proposed above can achieve 

deep mining of brake pad wear features in space and time, 

and has obtained strong generalization ability and faster 

network fitting speed, but there is still room to improve 

the accuracy of the model. The attention mechanism can 

give different weight values to each feature according to 

the significance of the sample features, thus avoiding the 

interference of invalid features and improving the 

prediction accuracy of the model
 [17]

. The attention 

mechanism based LSTM network model is shown in 

Figure 5. 

 

Figure 5  LSTM model based on attention mechanism 

The specific principle of the LSTM network model 

based on the attention mechanism is as follows: 

(1) Decode the hidden layer state of the input brake 

pad wear feature Xt for each ∆t time Ht,i and then apply 

theAttention_Score function to compare the hidden layer 

statesHt,i  with the output of the LSTM network Ht 
correlation of the LSTM network, and the score of each 

sample feature at each ∆t time is calculatedEt,i which is 

calculated as shown in equation (10): 

𝐸𝑡,𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝑆𝑐𝑜𝑟𝑒(𝐻𝑡,𝑖 , 𝐻𝑡)              (10) 

(2) Based on the scores of each sample feature at 

each ∆t time, a softmax function was used to value the 

attention weights of the input brake pad wear featuresαi 
were calculated as shown in equation (11); 

𝛼𝑖 =
𝑒𝑥𝑝[𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝑆𝑐𝑜𝑟𝑒(𝐻𝑡,𝑖, 𝐻𝑡)]

∑ 𝑒𝑥𝑝[𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛_𝑆𝑐𝑜𝑟𝑒(𝐻𝑡,𝑗 , 𝐻𝑡)]
𝑚
𝑗=1

    (11) 

(3) The attention weights of the brake pad wear 

features areαi with the output of its LSTM networkHt 
weighted aggregation operation, resulting in a new brake 

pad wear feature vector Ht
∗ which is calculated as shown 

in equation (12): 

𝐻𝑡
∗ =∑𝐻𝑡

𝑚

𝑖=1

∗ 𝛼𝑖                              (12) 

where m is the number of nodes in the output of the 
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fully connected layer. 

In summary, the weight calculation process of the 

attention mechanism is implemented through the attention 

layer, the input of which is the temporal feature vector 

extracted by the LSTM networkHt and the output is a 

feature vector of Ht
∗ The new brake pad wear feature 

vector Ht
∗  The new brake pad wear feature vector is 

input to the fully connected layer to predict the remaining 

brake pad life and obtain the brake pad wear value ŷt 
The new brake pad wear feature vector is input to the full 

connection layer to complete the prediction of the 

remaining brake pad life. It is calculated as shown in 

equation (13): 

𝑦̂𝑡 = 𝑊𝑠𝐻𝑡
∗ + 𝑏𝑠                               (13) 

where ŷt is the predicted value of brake pad wear, 

theWsandbs are the weights and bias values of the fully 

connected layer, respectively. 

3.3 CNN-LSTM-Attention Model prediction process 

 

Figure 6  CNN-LSTM-Attention Model prediction 

process 

The CNN-LSTM based Attention model for 

regression prediction of the remaining brake pad life 

contains the following six steps, feature extraction and 

processing, division of sample data, training of CNN 

model, training of LSTM model, weight assignment of 

attention mechanism and prediction of brake pad wear, 

the CNN-LSTM-Attention model prediction process is 

shown in Figure 6, and the specific steps are as follows: 

(1) Feature extraction and fusion of the raw signals 

from the 3 channels of brake speed, brake pressure and 

brake temperature as well as brake pad wear values to 

form a 50 x 4 sample matrix. 

(2) The above 50×4 sample matrix was batch 

normalised and its order was randomly disordered to 

divide the training and test sets of the CNN model in a 

ratio of 3:2.  

(3) The CNN network is constructed, and the 

training and test sets from step 2 are used to perform 

convolution and pooling operations to extract a spatial 

feature vector Xr, which is dimensionally reduced by 

PCA to form a new training and test set. 

(4) Construct an LSTM network and apply forgetting 

gates, input gates and output gates to the training set output 

from step 3 to extract a temporal feature vector Ht. 

The attention mechanism is introduced to assign 

weights to each wear feature, eliminate invalid features, 

output a new wear feature vectorHt
∗ and complete the 

training of the LSTM model. 

The test set output from step 3 is fed into the LSTM 

model trained in step 5 to complete the regression 

prediction of the remaining brake pad life. 

4 Experimental analysis of brake pad life 

models 

4.1 Setting of structural parameters of the prediction 

model 

Based on the advantages of Convolutional Neural 

Network (CNN) in mining spatial features and the 

characteristics of Long Short Term Memory Network 

(LSTM) in processing temporal features, this paper 

proposes an Attention-CNN-LSTM based brake pad life 

prediction model. After comparing the experimental 

prediction effects, the optimal model structure and 

parameter configuration selected in this paper is shown in 

Table 2, which mainly includes an input layer, CNN layer, 

LSTM layer, Attention layer, Dropout layer and output 

layer. The model first passes a 50×4 sample dataset 

through the input layer to the CNN layer, which mines the 

deep features of the brake pad wear data and uses them as 

input to the LSTM layer after two convolutions and 

pooling. The LSTM layer then learns the non-linear 

relationship between brake pad wear and the input 

features as well as the time dependence present in the 

brake pad wear sequence. Finally the attention 

mechanism uses a scoring function to assign greater 

weight values to the brake pad wear features at important 

moments, and the output layer is used to obtain the brake 

pad wear prediction values. Thus, the essence of the 

model is in obtaining a mapping between the current 

moment's brake pad state and the brake pad wear values 

at multiple historical moments. 
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Table 2  Structural parameters of CNN-LSTM-PSO model 

1 Input layer 

Sample data set 

Matrix dimension: 

50 x 4 

2 

Convolutional layer 1 
Activation function: RELU 

Convolution kernel: 

3 x 3 Maximum pooling 

Batch standardisation 

layer 1 

Pooling layer 1 

 

3 

Convolutional layer 2 
Activation function: RELU 

Convolution kernel: 

3 x 3 Maximum pooling 

Batch standardisation 

layer 2 

Pooling layer 2 

4 LSTM layer 

Learning rate: 0.004 

Number of hidden layer units: 50 

Activation function: Sigmoid 

5 Attention layer 

Attention weighting values:   αi 

Scoring function: 

Attention_Score 

6 Dropout layer 25% discard 

7 Output layer Activation function: Softmax 

4.2 Comparison of predictive model evaluation indicators 

In order to quantify the predictive performance of 

the brake pad residual life model, three objective 

evaluation metrics are selected, namely the mean absolute 

error MAE, root mean square error RMSE and coefficient 

of determination R2. The mean absolute error MAE can 

be used to obtain an evaluation value, but a comparison 

between different models is required to reflect the model's 

merit. The smaller the RMSE and the closer the 

coefficient of determination R2 is to 1, the higher the 

accuracy and precision of the prediction model. The three 

evaluation indicators are calculated as follows: 

𝑀𝐴𝐸 =
∑ |𝑦𝑡 − 𝑦̂𝑡|
𝑚
𝑡=1

𝑚
                             (14) 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑡 − 𝑦̂𝑡)

2𝑚
𝑡=1

𝑚
                          (15) 

𝑅2 = 1 −
∑ (𝑦𝑡 − 𝑦̂𝑡)

2𝑚
𝑡=1

∑ (𝑦𝑡 − 𝑦̅)
2𝑚

𝑡=1

                           (16) 

where, m is the number of samples output from the 

fully connected layer, the number of samples in this paper 

is 50, and ŷt is the predicted value of brake pad wear, 

andyt is the actual value of brake pad wear. 

4.3 CNN-LSTM-Attention Model prediction results  

The CNN-LSTM-Attention model proposed in this 

paper is verified by using the data published by the Disc 

Brake Simulation Experimental Research Group of China 

University of Mining and Technology 
[18]

. The data set 

was experimented using a disc brake simulated braking 

test bed, where information from three channels of 

braking speed, braking pressure and braking temperature 

were collected using each sensor at ∆t time intervals, 

while the wear thickness of the brake pads was measured. 

The data set was feature extracted and fused to form a 

final 50 x 4 sample matrix, which was fed into a 

CNN-LSTM model based on an attention mechanism to 

perform regression prediction of the remaining life of the 

brake pads, the prediction results of which are shown in 

Figure 7. The average absolute error MAE value of the 

model is 0.0048, the root mean square error RMSE value is 

0.0059 and the coefficient of determination R2 value is 

0.9636. The results show that the CNN-LSTM model based 

on the attention mechanism can effectively predict the 

remaining life of brake pads and achieve better results. 

 

Figure 7  CNN-LSTM-Attention model prediction 

results 

In order to further validate the prediction 

performance of the CNN-LSTM brake pad residual life 

model based on the attention mechanism, a comparative 

analysis with other traditional prediction models in the 

past, such as BP neural network, CNN model, LSTM 

model and CNN-LSTM model, was carried out. Figure 8 

shows the comparison results of the four traditional life 

prediction models. From Figure 8, it can be seen that the 

CNN-LSTM-Attention model proposed in this paper has 

43.8%, 35.2%, 29.8% and 16.9% lower RMSE values 

compared to the BP, CNN, LSTM and CNN-LSTM models 

respectively; and the CNN-LSTM-Attention model 

predicts a brake pad wear curve that is closer to the real 

brake pad wear curve than the other four prediction models, 

and the error curve has the smallest fluctuation range. 

It can be seen that the prediction performance of the 

CNN-LSTM brake pad remaining life model based on the 

attention mechanism proposed in this paper has certain 

superiority. This is because other traditional prediction 

models have a single algorithm and incomplete feature 

extraction, while the CNN-LSTM model is not only 

capable of mining deep spatial features, but also better 

able to handle temporal features; at the same time, 

different weight values are given to the brake pad wear 

data at different moments in the input sample under the 

action of the attention mechanism, which strengthens the 

attention to the wear data at key moments in order to 

more accurately represent the brake pad This results in a 

more accurate representation of the brake pad wear 
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feature information, thus making the generalization 

ability of the whole model stronger and further improving 

the accuracy of brake pad wear prediction. 

 
(a) 

 
(c) 

 
(b) 

 
(d) 

Figure 8  Prediction results of the four traditional models 

(a) BP model (b) CNN model (c) LSTM model (d) CNN-LSTM model 

Table 3 shows the calculation results of the five 

model evaluation metrics. Compared with the improved 

CNN-LSTM model based on the attention mechanism 

proposed in this paper and the CNN-LSTM model, the 

mean absolute error MAE and root mean square error 

RMSE are reduced and the coefficient of determination 

R2 was improved, This result demonstrates the role of the 

attention mechanism in predicting brake pad wear. In 

addition, compared with other traditional prediction 

models, the CNN-LSTM-Attention The mean absolute 

error MAE of the prediction model was the smallest, with 

a reduction of 37.7%, 31.4%, 28.4% and 2.04% compared 

to the BP, CNN, LSTM and CNN-LSTM models 

respectively; the value of the coefficient of determination 

R2 was closest to 1, with an improvement of 8.26%, 

5.25%, 3.99% and 1.85% , respectively, these two results 

again prove that using the CNN-LSTM-Attention  The 

two results again demonstrate that the CNN-LSTM-model 

proposed in this paper is more accurate in predicting the 

brake pad thickness wear value, and can be more effective 

in monitoring and intelligently warning the remaining 

brake pad life. 

Table 3  Comparison results of the five model 

evaluation indicators 

Lifetime prediction models RMSE MAE R2 Value 

BP Neural Networks 0.0105 0.0077 0.8840 

CNN models 0.0091 0.0070 0.9130 

LSTM model 0.0084 0.0067 0.9252 

CNN-LSTM Models 0.0071 0.0049 0.9458 

CNN-LSTM-Attention model 0.0059 0.0048 0.9636 

5 Conclusion 

In this paper, we use sensor technology to collect the 

raw signals from 3 channels of brake speed, brake 

pressure and brake temperature, and also measure the 

wear thickness of brake pads, and construct a sample 

matrix after feature extraction and fusion, then propose a 

CNN-LSTM prediction model based on attention 

mechanism to predict the remaining life of brake pads, 

and conduct a comparative study with other traditional 

prediction models, the results show that: 

(1) With the increase of braking speed, braking 

pressure and braking temperature, the amount of brake 

pad wear of the car is on the rise; however, braking speed 

and braking temperature have a greater influence on the 

amount of brake pad wear, while braking pressure has no 

significant influence on the amount of brake pad wear. 

(2) Using the CNN-LSTM-Attention model for 

regression prediction of brake pad wear values with a 

mean absolute error MAE value of 0.0048, a root mean 

square error RMSE value of 0.0059 and a coefficient of 

determination R2 value of 0.9636, which indicates that 

the model can effectively predict the remaining life of 

brake pads with good results. 
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(3) Compared with the BP model, CNN model, 

LSTM model and CNN-LSTM model, the 

CNN-LSTM-Attention model proposed in this paper 

mean absolute error MAE and root mean square error 

RMSE values were reduced, and the value of the 

coefficient of determination R2 was improved to be 

closest to 1. This indicates that the constructed brake pad 

life prediction model has less error, better accuracy and 

better results. 

In the future, the CNN-LSTM -Attention brake pad 

residual life prediction model can be widely used in 

automotive manufacturing and car maintenance, etc. The 

model is of practical significance as it monitors the brake 

pad braking speed, braking pressure and braking 

temperature in real time, outputs the wear of the brake 

pad after each braking, and accumulates the wear after 

braking to calculate the remaining thickness of the brake 

pad, and generates a failure alarm indication when the 

remaining thickness of the brake pad exceeds the wear 

threshold to avoid accidents caused by brake failure. 
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Abstract: 

In order to achieve predictive maintenance of CNC machining tools and to be able to change tools intelligently before tool wear is at a 

critical threshold, a CNN-LSTM tool wear prediction model based on particle swarm algorithm (PSO) optimization with multi-channel 

feature fusion is proposed. Firstly, the raw signals of seven channels of the machining process are collected using sensor technology 

and processed for noise reduction; secondly, the time-domain, frequency-domain and time-frequency-domain features of each channel 

signal are extracted, and a sample data set of spatio-temporal correlation of traffic flow is constructed by dimensionality reduction 

processing and information fusion of the above features; finally, the data set is input to the CNN-LSTM-PSO model for training and 

testing. The results show that the CNN-LSTM-PSO model can effectively predict tool wear with an average absolute error MAE value 

of 0.5848, a root mean square error RMSE value of 0.7281, and a coefficient of determination R2 value of 0.9964; and compared with 

the BP model, CNN model, LSTM model and CNN-LSTM model, its tool wear prediction accuracy improved by 7.56%, 2.60%, 

2.98%, and 1.63%, respectively. 
Keywords: feature fusion; CNN-LSTM; tool wear; life prediction 

 

1 Introduction 

The severity of tool wear during CNC machining 

plays a decisive role in the machining accuracy of 

products, and serious tool wear can reduce product quality, 

lead to increased scrap rate, and even lead to machine 

accidents. Therefore, in recent years, tool wear prediction 

has become a fundamental and prerequisite work in the 

field of tool life management and intelligent tool change. 

Early on, experts and scholars have made some progress 

by exploring the tool wear mechanism and combining 

Taylor's empirical formula for tool life prediction, the  

Andis Ābele et al. confirmed the validity of Taylor's 

empirical formula for predicting tool life and determined 

the coefficients of Taylor's formula, and finally obtained 

the formula for predicting the length of the cutting 

trajectory at the critical wear stage of the tool based on 

the cutting speed
[1]

 . However, the Taylor's empirical 

formula only yields a fixed value of tool life, which does 

not correspond to the actual application of the tool, 

because the machining parameters are variable and the 

manufacturing environment is complex, which leads to 

the impossibility of the remaining tool life in the form of 

a fixed value. 

Based on the above problems, researchers have 

started to use mechanical learning techniques to predict 

tool life. Commonly used mechanical learning prediction 

models are: random forest 
[2]

, BP neural network 
[3]

, 

support vector machine (SVM) 
[4]

, etc. Wei Weihua 
[5] 

et 

al. optimized BP neural network by genetic algorithm, so 

that the model's optimization and learning ability can be 

improved, which can effectively identify tool wear. Sarat 

Babu Mulpur 
[6]

 et al. used OGM-SVM model for 

real-time prediction of rear tool face wear based on 

extracted multi-sensor heterogeneous data features and 

also achieved good prediction results, but the prediction 

efficiency and accuracy were not high. 

In the automated production process, a high accuracy 

life prediction model can be very effective in predicting 

the future tool wear level, which is important to study the 

tool wear at a critical threshold to enable intelligent tool 

change. Therefore, a large number of experts and scholars 

have applied deep learning theory in tool life prediction, 

such as recurrent neural networks (RNN) 
[7]

, long and 

short-term memory networks (LSTM) 
[8] 

and 

convolutional neural networks (CNN) 
[9]

, whose 

prediction effect is significantly higher than mechanical 

learning techniques. Recently, work on tool life prediction 

based on long and short term memory networks (LSTM) 
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has been carried out gradually. Ma Kaile 
[10]

et al. analyzed 

the singularity of the original vibration signal to eliminate 

the effect of milling path and constructed a stacked 

LSTM model for tool wear prediction, and compared with 

models such as WOA-SVR, it was found that the method 

improved the accuracy of tool wear prediction. Although 

the LSTM network can perfectly process the timing 

information of tool wear, it is difficult to extract the deep 

features hidden in the samples, which leads to the 

incomplete extraction of tool wear prediction features and 

there is still room for improvement. 

Convolutional neural networks (CNNs) have strong 

feature extraction capability and low computational 

complexity compared with long and short-term memory 

networks (LSTMs), and can tap deep features hidden in 

samples. Lim Meng Lip 
[11] 

et al. cropped the surface 

profile images of machined parts and input them into 

CNN networks for tool wear prediction, and the results 

showed that the CNN model can meet the tool wear 

prediction requirements with an accuracy of 98.9 % 

accuracy. Although these methods have been successful in 

predicting tool wear, it is still challenging to fully reveal 

the effective features present in the monitored signals due 

to the defects in the network structure 
[12]

. 

As we all know, when the tool wear reaches the 

sharp wear stage, the system alerts for intelligent tool 

change, which can improve product machining accuracy 

and reduce tool management costs. The rule of tool wear 

is faster in the early stage, slower in the middle stage, and 

the fastest and most drastic in the late stage. It can be seen 

that using only one model for tool life prediction will lead 

to a single extracted feature, which is prone to overfitting. 

Therefore, combining convolutional neural network 

(CNN) and long and short-term memory network (LSTM) 

has become an inevitable trend, using CNN model to 

extract potential deep features in space and capturing time 

series information in time by LSTM model, so that the 

temporal and spatial features of the data can be fully 

utilized to make up for the shortcomings of the above 

single prediction model. 

In order to further improve the prediction effect of 

the model, the hyperparameters in the prediction model 

must be optimized. The more common hyperparameter 

optimization methods include random optimization 
[13]

, 

gradient-based optimization 
[14]

, genetic algorithm 

optimization 
[15]

, particle swarm algorithm optimization 
[16]

, 

etc. The particle swarm algorithm (PSO) can perform global 

optimization with fewer parameters, and its powerful search 

performance and individual optimization capability can 

speed up the convergence of the model, so it has been widely 

used and studied by scholars in recent years 
[17]

. 

Therefore, this paper proposes a CNN-LSTM tool wear 

prediction model with multi-channel feature fusion based on 

machine vision, feature extraction, deep learning and 

hyperparameter optimization, constructs a spatio-temporal 

correlation feature matrix of traffic flow so that the temporal 

and spatial features of the monitored signal can be fully 

utilized, and optimizes the hyperparameters in the prediction 

model using particle swarm algorithm (PSO), so as to 

improve the tool wear prediction accuracy. The research of 

this method will propose a new theory and method for tool 

wear remaining life prediction, and lay a theoretical 

foundation and scientific basis for improving the 

development of China's machine tool manufacturing 

industry and intelligent tool changing field. 

2 Construction of CNN-LSTM-PSO prediction 

model 

In order to improve the accuracy and accuracy of the 

prediction model of tool remaining life, a multi-channel 

feature fusion CNN-LSTM tool wear prediction model 

based on particle optimization was proposed in this paper. 

The output tool wear values were monitored by the 

vibration signals of three channels, the cutting force 

signals of three channels and the acoustic emission 

signals of one channel. Thus, predictive maintenance of 

NC machining tools can be realized, and tools can be 

changed intelligently before tool wear is in the critical 

threshold. The improvements are as follows:  

(1) The characteristics of vibration signals, cutting 

force signals and acoustic emission signals were extracted 

by batch normalization and dimensionality reduction 

processing, which improved the generalization ability of 

the model, avoided overfitting phenomenon and improved 

the convergence speed of the model.  

(2) CNN model reduces network complexity with its 

unique structure of local connection and weight sharing, 

and the spatial continuity of sample features is maintained 

after convolution and pooling operations.  

(3) Long term memory network (LSTM) is a further 

optimization of the traditional RNN network, which can 

process longer time series data while avoiding the 

phenomenon of gradient vanishing or gradient explosion.  

(4) Using the powerful search and global 

optimization ability of PSO algorithm, the two parameters of 

the initial learning rate parameter and the number of hidden 

layer units in LSTM network were iteratively optimized, 

which reduced the subjective influence of manual selection 

parameters, and thus improved the prediction accuracy of 

tool wear model. The CNN-LSTM-PSO tool wear prediction 

model is shown in Figure 1. 

 

Figure 1  CNN-LSTM-PSO tool wear prediction model 

2.1 Convolutional Neural Network (CNN) 

Convolutional neural network (CNN) 
[18]

 is a kind of 
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neural network, which is a typical representative of deep 

learning and has obvious advantages for processing 

spatial data. The most important difference between CNN 

convolutional neural network and other traditional neural 

networks is the convolution operation and pooling 

operation, which can realize local connection and weight 

sharing. Therefore, the pre-processing part of this paper 

uses the CNN model to extract the spatial features of the 

315×47 sample feature matrix, and its output is a 

one-dimensional spatial sequence matrix, which lays the 

foundation for the prediction of tool wear using the 

LSTM model. The principle is as follows: 

(1) The sample feature matrix after batch 

normalization and dimensionality reduction is input to the 

CNN convolutional neural network for convolutional 

operation. The sample information is indirectly 

characterized by the local features of the sample through 

the weight value of each layer derived from the 

convolutional operation, and the higher the layer is, the 

more detailed the local features are extracted, and also the 

spatial continuity of the sample is maintained, and its 

convolutional operation is shown in equation (1): 

Xi
k =∑Wi

kj
⨂Xi−1

j
+ bi

k                            (1)

n

j=1

 

Where Xi
k  denotes the feature matrix of the kth 

neuron at the output of the ith layer, and Wi
kj

 denotes the 

weight value of the kth neuron in the ith layer, and ⨂ 

denotes the convolution operator, and Xi−1
j

 denotes the 

feature matrix of the jth neuron at the output of layer i-1, 

and bi
k is the bias coefficient of the kth neuron in layer i. 

(2) In order to improve the prediction accuracy of 

the tool wear life model, the CNN network uses ReLU 

function for nonlinear activation, which has good 

non-saturation characteristics to avoid the gradient 

disappearance phenomenon. The activation function is 

shown in equation (2): 

Vi
k = Relu(Xi

k) = {
0, xi

k < 0

xi
k, xi

k＞0
                       (2) 

where xi
k is theXi

k each eigenvalue in the feature 

matrix. 

(3) Each tool wear feature data is input to the 

pooling layer after convolution operation, and the pooling 

type is selected as maximum pooling, which can retain 

the original features and reduce the parameters of network 

training, and improve the robustness of the extracted 

features. The maximum pooling is shown in equation (3): 

Ci
k(s, t) = Max

1+(s−1)Q≤d≤sQ

1+(t−1)P≤h≤tP

{Vi
k(d, h)}                (3) 

where Vi
k(d, h) is the eigenvalue of column h of 

row d of the ith feature matrix input to the pooling layer, 

and Ci
k(s, t) is the eigenvalue of the sth row t column of 

the ith feature matrix obtained after pooling, and P and Q 

are the length and width of the pooled region, 

respectively. 

(4) The n feature matrices of dimension S × T, which 

are derived from each row of the 315 × 47 sample feature 

matrix after two convolution and pooling operations, are 

input to the global average pooling layer. The 

dimensionality of the pooling kernel of the global average 

pooling layer is kept consistent with the dimensionality of 

the feature matrix, and the n feature matrices are 

dimensionality reduced to reduce the covariance of the 

sample features and avoid the influence of redundant 

features, thus reducing the training time of the LSTM long 

and short term memory network, so the whole CNN model 

finally outputs a feature vector Xt = {x1 , x2 , ... , xi , ... , xj , } 

where xi is calculated as shown in equation (4): 

xi =
1

ST
∑∑Ci

k(s, t)                          

T

t=1

(4)

S

s=1

 

2.2 Long and short-term memory neural network (LSTM) 

CNN convolutional neural networks are capable of 

mining local spatial features related to tool wear, but it is 

difficult to extract longer time series data. Recurrent 

neural networks (RNN) can perform temporal processing 

of tool wear data, but it is difficult to process for longer 

time series data, and gradient disappearance or gradient 

explosion occurs during operation. It is usually used to 

solve this phenomenon using long and short term memory 

networks (LSTM) or hierarchical RNNs 
[19]

. Long 

Short-Term Memory Network (LSTM) is a further 

improvement of the traditional RNN network by 

introducing memory cells on the input, output, and 

forgetting past information to construct new cell statesCt 
Realize the data transmission, and control the path of data 

transmission by logic operation through input gate, output 

gate, and forget gate, so as to complete the processing of 

longer time series data, and its LSTM network gate cell 

structure is shown in Figure 2. The new cell state Ct and 

the output state Ht of the LSTM core are constructed with 

the following equations: 

Ct = ft⊗ Ct−1 + it⊗ tanh(Ht−1)                   (5) 

Ht = ot⊗ tanh(Ct)                              (6) 

where ft  is the forgetting gate, which serves to 

make the cell forget or remember the state of the previous 

cell Ct−1  The input gate it  is the input gate, which 

controls the input signal and thus updates the memory cell; 

the current cell state is obtained by reconstructing the cell 

through the forgetting gate and the input gate Ct The 

output gateot The output gates are used to control the 

state of the cell Ct The output gates are used to control 

the state of the cell so that it is transferred to the next cell. 
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Figure 2  LSTM network gate cell structure 

However, the LSTM model also has shortcomings, 

when dealing with data samples with a large number of 

features, overfitting is prone to occur, which requires the 

use of some optimization algorithms to find the optimal 

number of implied layers and initial learning rate and 

other parameters to increase the model nonlinear fitting 

performance and prediction accuracy 
[20]

. 

2.3 Particle Swarm Optimization (PSO) algorithm 

 

Figure 3  Particle swarm optimization algorithm 

optimization process 

The particle swarm algorithm (PSO) is an intelligent 

algorithm developed by observing the social behavior of 

birds. The PSO algorithm is similar to the flock feeding 

process, and is widely used in the global optimization 

process of hyperparameters due to its simple principle and 

easy operation, which refers to the individuals in the 

population as a particle, and each particle is a possible 

solution of the optimized parameter in the global search 

space. Each particle is a possible solution of the 

optimized parameter in the global search space, and its 

characteristic index mainly includes three aspects: 

position, speed and fitness value. Firstly, the fitness value 

of each particle is calculated by the fitness function to 

memorize the optimal position and speed of all particles. 

In each iteration, the particle reaches a new position by 

adjusting the velocity component of any dimension and 

calculating it, and so on, until the particle finds the 

optimal position or reaches the number of iterations, so as 

to complete the optimization process of the particle in the 

multidimensional search space, the particle swarm 

optimization algorithm is shown in Figure 3. In this paper, 

we use the PSO algorithm to optimize the 

hyperparameters in the CNN-LSTM model and derive the 

optimal solution to avoid the overfitting phenomenon 

during model training. 

2.4 CNN-LSTM-PSO hybrid model 

In the regression prediction of tool wear, the 

convolutional layer in the CNN model is first used to 

obtain the weight parameters, and the pooling layer is 

used for dimensionality reduction to mine the local 

features related to tool wear, and its output is a 

one-dimensional spatial feature vector. The output feature 

vector is then trained as an LSTM model, which enables 

the two models to complement each other in time and 

space, thus improving the accuracy of prediction. Figure 4 

shows the CNN-LSTM model prediction process based 

on particle swarm optimization for multi-channel feature 

fusion proposed in this paper. The essence is to use the 

CNN convolutional neural network model as a spatial 

feature extractor and the LSTM model as a trainer for 

regression prediction, based on which the 

superparameters such as initial learning rate and number 

of hidden layer units in the LSTM model are optimized 

by the PSO algorithm, so that the model nonlinear fitting 

performance is improved and the tool wear prediction 

effect is optimized, and the specific steps are as follows: 

Step 1: The original signals of the 7 channels are 

processed for noise reduction and feature extraction and 

fusion in the time domain, frequency domain and 

time-frequency domain, respectively. 

Step 2: Using Pearson's correlation coefficient 

formula to downscale the above feature data to construct 

the training and test sets of the model. 

Step 3: Build a convolutional neural network, train it 

using the training set and test set from step 2, output a 

spatial feature vector, and form a new training set. 

Step 4: The hyperparameters such as initial learning 

rate and number of hidden layer units in the LSTM model 

are used as optimization-seeking processing objects by 

the PSO algorithm, and the particle swarm optimization 

model is initialized. 
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Figure 4  CNN-LSTM-PSO model prediction flow 

Step 5: As shown in Figure 6, firstly, the particle's 

fitness value is calculated, secondly, pbest, gbest are 

updated according to the fitness, and finally, the position 

and velocity of the updated particle are recorded. 

Step 6: When the maximum number of iterations is 

reached or the most suitable position is found, the whole 

loop is terminated and the optimal hyperparameters are 

derived. If the termination condition is not reached, then 

return to step 5 for the next iteration. 

Step 7: Train the LSTM model with the training set 

formed in step 3 and the hyperparameters obtained in step 

6, thus completing the regression prediction of tool wear. 

3 Construction of tool wear sample dataset 

3.1 Multi-channel feature extraction and fusion 

The experimental data were obtained from the open 

data of the 2010 High Speed CNC Machine Tool Health 

Prediction Contest of the Prediction and Health 

Management Society (PHM), New York, USA
[21]

. The 

dataset is the result of real-time tool wear monitoring 

experiments on six ball-ended milling tools. In this paper, 

the experimental dataset of group C1 is selected, where 

the experimental data of the first 200 tool walks of group 

C1 is used as the sample training set and the experimental 

data of the last 115 tool walks are used as the test set. The 

original signals in each dataset include X-axis, Y-axis and 

Z-axis cutting force signals, X-axis, Y-axis and Z-axis 

vibration signals and acoustic emission signals, among 

which cutting force signals and vibration signals contain 3 

channels and acoustic emission signals are 1 channel 

signals, totaling 7 channels. 

In this experiment, the tool is walked once every ∆t 

time, and each time the tool is walked, the original signal 

of 7 channels can be collected, and the number of collected 

points of the original signal of each single walk is about 

200000 or more, which shows that the number of signal 

data is huge and there is a lot of noise, and these noises are 

often caused by the instability of the system at the moment 

the tool is cut in and out. This requires noise reduction for 

all types of raw signals collected above to avoid adverse 

effects during model training. Therefore, the sampling 

points with data labels from 50001 to 100000 in the raw 

signal are collected respectively as the research object. The 

results of the comparison between the original signal and 

the noise reduction signal are shown in Figure 5, which 

shows that the signal fluctuation after noise reduction is 

uniform and noiseless. In this experiment, the number of 

tool walks in each channel is 315, and there are 7 channels 

in total, so the original signal can form a 315×7 tool wear 

signal matrix after noise reduction. 

 
(a) 

 
(b) 

Figure 5  Comparison results between the original 

signal and the noise reduction signal.(a) Raw signal 

data.(b) Signal data after noise reduction 

The 315×7 signal matrix after noise reduction is 

extracted in the time domain, frequency domain and 

time-frequency domain, and the time-domain information 

mainly includes mean, standard deviation, root mean 

square, etc., totaling 13 time-domain features; the 

frequency domain information mainly includes frequency 

domain amplitude mean, center of gravity frequency, 

mean square frequency, etc., totaling 5 frequency domain 

features; the wavelet packet decomposition is performed 

on the original signal, resulting in 8 frequency bands, and 

the energy of each frequency band is used as 

time-frequency domain information, totaling 8 

time-frequency domain features. The energy of each 

frequency band is used as time-frequency domain 

information, and the total is 8 time-frequency domain 

features, so 26 features can be extracted from each 

channel signal. The features of all channels are fused to 

obtain 182 features, and the matrix is reorganized to 

obtain a 315×182 feature matrix. 
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3.2 Feature dimensionality reduction processing 

The ball-head milling cutter used in this experiment 

has three teeth in the CNC machining process. In order to 

improve the accuracy and precision of tool wear 

prediction, the rear face wear of each tooth needs to be 

measured and its average value is taken to characterize 

the actual wear of the tool. In this experiment, there are 

315 tool walks, and the average value of the measured 

wear after each tool walk is composed of a sample target 

matrix with a matrix dimension of 315×1. Each value in 

the sample target matrix is the output data of the 

CNN-LSTM-PSO wear prediction model. In this 

experiment, the LEICA MZ12 microscope was used to 

measure the tool rear face wear, and its C1 group tool 

wear variation curve is shown in Fig. 6, and its variation 

pattern is consistent with the temporal information 

mentioned in the previous section. 

 

Figure 6  Test tool wear variation curve 

According to the above, the extracted features 

yielded a feature matrix of 315 × 182 by multi-channel 

feature fusion, but not all the features can characterize the 

wear of the back tool face. In order to find the correlation 

between the feature matrix and the target matrix more 

clearly, the above multi-channel fused feature matrix and 

the tool wear value are normalized, and the normalized 

processing formula is 

𝑋𝑛 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
                              (7) 

The correlation between the normalized sample data 

and the tool wear curve is shown in Figuer 7. It can be 

seen from the figure that there are many features that do 

not correlate with the tool wear values or have weak 

correlation that will interfere with the tool wear prediction 

model and should be given to be removed. And Pearson 

correlation coefficient is the most widely used correlation 

coefficient analysis method, which can be used to 

measure the correlation between the extracted feature 

values and tool wear 
[22]

. Its calculation formula is: 

𝑃𝑥𝑦 =
𝑛∑𝑥𝑖𝑦𝑖 −∑𝑥𝑖 ∑𝑦𝑖

√𝑛∑𝑥𝑖
2 − (∑𝑥𝑖)

2√𝑛∑𝑦𝑖
2 − (∑𝑦𝑖)

2
      (8) 

where Pxy  denotes the Pearson correlation 

coefficient of the signal feature x and the tool wear value 

y. The Pearson correlation coefficient formula is used to 

calculate the 315 × 182 feature matrix and filter out 

|Pxy| ≥ 0.9 the strongly correlated features as the input 

of the prediction model. In total, 47 strongly correlated 

features are extracted through the calculation, taking the 

X-axis cutting force signal as an example, 7 strongly 

correlated features are obtained after dimensionality 

reduction, and the sample data of the signal after 

dimensionality reduction are shown in Figure 8, which 

shows that the noise signals with poor correlation are 

deleted, and the stripped out data with poor correlation 

are shown in Figure 9; in this paper, the 47 strongly 

correlated features are fused and reorganized, and the 

dimensionality of the sample feature matrix is 315×47. 47, 

and this sample feature matrix is the input data of 

CNN-LSTM-PSO wear prediction model. 

 

Figure 7  Normalised sample dataset 

 

Figure 8  Sample data after dimensionality reduction 

 

Figure 9  Deleted poor correlation data 
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4 Experimental verification and analysis of 

tool wear 

4.1 Tool wear experimental conditions 

The experimental conditions for tool wear are shown 

in Figure 10, whose cutting vibration signals were 

collected using a Kistler 8636C piezoelectric 

accelerometer, cutting force signals were collected using 

a Kistler 8152 three-way platform dynamometer, and 

acoustic emission signals were collected using a Kistler 

9265B acoustic transmitter, whose relevant CNC 

machining cutting parameters are shown in Table1. 

 

Figure 10  Experimental conditions for tool wear 

Table 1  CNC machining cutting parameters 

Main shaft 

Rotational 

Speed 

Feeding 

Speed 

Back 

draft 

Side Eating 

Knife 

quantity 

Feed 

amount 

Cold cutting 

conditions 

10400 1555 0.2 0.125 0.001 Dry cutting 

In this paper, the raw signals related to tool wear are 

collected in real time according to the above experimental 

conditions, and each channel raw signal is processed by 

noise reduction, extraction, fusion and dimensionality 

reduction to obtain a 315×47 sample feature matrix, and a 

sample dataset with spatio-temporal correlation of traffic 

flow is jointly constructed with 315×1 sample target 

matrix with dimensionality of 315×48. CNN-LSTM-PSO 

The model first inputs the sample dataset into the 

multilayer CNN model to extract the spatial sequence 

features of the traffic flow data and outputs the spatial 

feature vector. Then the spatial feature vector is input to 

the multilayer LSTM model to extract the time series 

features of the data, thus combining the temporal features 

and spatial features. Finally, the PSO algorithm is used to 

optimize the hyperparameters in the CNN-LSTM model, 

so as to complete the prediction of tool wear. 

4.2 Setting of prediction model parameters 

In order to avoid the influence of external factors, 

the number of particle swarm individuals in the PSO 

algorithm is set to 15 and the maximum number of 

iterations is set to 60. The values of the initial learning 

rate parameter of the optimized CNN-LSTM model are 

set between 0.001 and 0.01, and the values of the number 

of hidden layer units are set between 1 and 100. The 

structural parameters of the tool wear prediction model 

after hyperparametric optimization based on the PSO 

algorithm are shown in Table 2. 

Table 2  Structural parameters of CNN-LSTM-PSO 

model 

Structural 

section 
Network structure Name Parameter settings 

1 

Convolutional layer 1 Activation function: RELU 

Convolution kernel: 3*3 

Maximum pooling 

Batch standardisation layer 1 

Pooling layer 1 

2 

Convolutional layer 2 Activation function: RELU 

Convolution kernel: 3*3 

Maximum pooling 

Batch standardisation layer 2 

Pooling layer 2 

3 LSTM layer 1 

Learning rate: 0.004 

Number of hidden layer units: 

50 Activation function: 

Sigmoid 

4 LSTM layer 2 

Learning rate: 0.004 

Number of hidden layer units: 

32 Activation function: 

Sigmoid 

5 Dropout layer 25% discard 

6 Output layer Activation function: Softmax 

In order to quantify the prediction performance of 

the tool life model, three objective evaluation indexes are 

selected, namely the mean absolute error MAE, the root 

mean square error RMSE and the coefficient of 

determination R2. Among them, the mean absolute error 

MAE can obtain an evaluation value, but the comparison 

between different models is required to reflect the model's 

superiority; the mean square error RMSE and the 

coefficient of determination R2 can directly characterize 

the model's superiority. The smaller the mean square error 

RMSE and the closer the coefficient of determination R2 

is to 1, the higher the accuracy and precision of the 

prediction model. The three evaluation indicators are 

calculated as follows: 

𝑀𝐴𝐸 =
∑ |𝑦𝑡 − 𝑦̂𝑡|
𝑚
𝑡=1

𝑚
                                  (9) 

𝑅𝑀𝑆𝐸 = √
∑ (y𝑡 − 𝑦̂𝑡)

2𝑚
𝑡=1

𝑚
                           (10) 

𝑅2 = 1 −
∑ (𝑦𝑡 − 𝑦̂𝑡)

2𝑚
𝑡=1

∑ (𝑦𝑡 − 𝑦̅)
2𝑚

𝑡=1

                           (11) 

where, m is the number of samples output from the 

fully connected layer, the number of samples in this paper 

is 315, and ŷt is the predicted value of tool wear, and yt 
is the actual value of tool wear. 
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4.3 Tool life prediction results 

In this paper, a CNN-LSTM model with 

multi-channel feature fusion using particle swarm 

optimization is used for tool wear regression prediction, 

and its test set prediction results are shown in Figure 11. 

The mean absolute error MAE value of the model was 

calculated to be 0.5848, the root mean square error 

RMSE value was 0.7281, and the coefficient of 

determination R2 value was 0.9964. The results show 

that the use of CNN-LSTM-PSO based model can 

effectively perform regression prediction of tool wear 

and achieve better results. 

 

Figure 11  CNN-LSTM-PSO test set prediction results 

Table 3 shows the effect of the PSO algorithm on the 

tool wear regression prediction model, where the 

hyperparameters such as the initial learning rate and the 

number of hidden layer units of the CNN-LSTM model 

rely on manual random selection, and it can be seen that 

the CNN-LSTM model optimized using the PSO 

algorithm has the best tool wear prediction. Compared 

with the CNN-LSTM model, its mean absolute error 

MAE and root mean square error RMSE are reduced and 

the coefficient of determination R2 is improved, and its 

performance index exceeds 0.99, while the performance 

index of the CNN-LSTM model with manually selected 

parameters is maintained at a maximum of about 0.98. 

This is mainly because the PSO algorithm obtained more 

accurate hyperparameter pairings after hyperparameter 

optimization of the CNN-LSTM model, which found the 

most critical attributes affecting the accuracy of tool wear 

prediction and avoided the blindness of setting parameters, 

thus improving the prediction results. 

Table 3  Effect of PSO algorithm on prediction model 

Algorithm 

Initial 

learning 

rate 

Number of hidden 

layer units 
Test set prediction results 

LSTM 1 LSTM 2 MAE RMSE R2 

CNN-LSTM 

0.01 100 50 2.9757 3.5829 0.9128 

0.01 60 20 2.2307 3.0005 0.9388 

0.001 100 50 2.0172 2.1781 0.9675 

0.001 60 20 0.9718 1.1914 0.9802 

CNN-SVM-PSO 0.004 50 32 0.5848 0.7281 0.9964 

To further validate the prediction performance of 

CNN-LSTM-PSO based tool wear, a comparative 

analysis was performed with other traditional prediction 

models in the past, such as BP neural network, CNN 

model, LSTM model and CNN-LSTM model. Figure 12 

shows the comparison results of the four traditional tool 

wear prediction models, and it can be seen from Figure 11 

that the root mean square error RMSE values of the 

CNN-LSTM-PSO model proposed in this paper are 

reduced by 78.59%, 56.85%, 66.99%, and 38.89% 

compared to the BP model, CNN model, LSTM model, 

and CNN-LSTM model, respectively. This shows that the 

prediction performance of the CNN-LSTM tool wear 

prediction model optimized based on the PSO algorithm 

proposed in this paper is superior due to the single 

algorithm of other traditional prediction models, 

incomplete feature extraction, and over-reliance on signal 

processing techniques and expert experience. 

 
(a) 

 
(b) 

 
(c) 
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(d) 

Figure 12  Prediction results of the four traditional models 

(a) BP model. (b) CNN model. (c) LSTM model.(d) CNN-LSTM model. 

Table 4  Comparison of prediction performance results 

of five models 

Algorithm 
Test set prediction results 

MAE RMSE R2 

BP Neural Network 2.5413 3.3946 0.9211 

CNN Algorithms 1.3242 1.6872 0.9705 

LSTM Algorithms 1.5425 2.2062 0.9667 

CNN-LSTM 

Algorithm 
0.9718 1.1914 0.9802 

CNN-SVM-PSO 

Algorithm 
0.5848 0.7281 0.9964 

Table 4 shows the comparison results of the 

prediction performance of the five models. It is found that 

the CNN-LSTM-PSO model using multi-channel feature 

fusion for tool wear prediction has the smallest value of 

mean absolute error MAE, which is reduced by 76.98%, 

55.84%, 62.09% and 39.82% compared to the BP, CNN, 

LSTM and CNN-LSTM models, respectively ; the value 

of the coefficient of determination R2 is closest to 1, 

which is 7.56%, 2.60%, 2.98%, and 1.63% higher 

compared to the BP, CNN, LSTM, and CNN-LSTM 

models, respectively. These two results again prove that 

the prediction of tool wear values using the 

CNN-LSTM-PSO model proposed in this paper is more 

accurate and can achieve more effective monitoring of 

remaining tool life and intelligent tool change. 

5 Conclusion 

In this paper, the open dataset of the tool health 

prediction competition is selected as the original data, and 

the original data is preprocessed using feature extraction 

and multi-channel fusion techniques, and then a 

CNN-LSTM model based on particle swarm optimization 

with multi-channel feature fusion is proposed to predict 

the tool wear values during milling machining, and 

compared with other single mechanical models and the 

traditional CNN-LSTM model analysis, and the results 

show that: 

(1) In this paper, the CNN model is used to extract 

local features from the feature matrix after multi-channel 

fusion and dimensionality reduction to obtain important 

information of tool wear data and avoid the interference 

of tool wear data by other factors. 

(2) The parameter search optimization of the tool 

wear prediction model by the particle swarm PSO 

algorithm reduces the subjective influence of manual 

parameter selection and avoids the blindness of setting 

parameters, thus improving the prediction accuracy. 

(3) Tool wear regression prediction using the 

CNN-LSTM-PSO model has a mean absolute error MAE 

value of 0.5848, a root mean square error RMSE value of 

0.7281, and a coefficient of determination R2 value of 

0.9964. This indicates that the model can effectively 

predict the remaining life of the tool with good results. 

(4) Compared with the BP model, CNN model, 

LSTM model and CNN-LSTM model, the mean absolute 

error MAE and root mean square error RMSE values of 

the CNN-LSTM-PSO model proposed in this paper have 

been reduced, and the value of the coefficient of 

determination R2 has been improved to be closest to 1. 

This indicates that the constructed tool life prediction 

model has less error, better accuracy and better. 

In the future, the CNN-LSTM-PSO tool wear 

prediction model can be widely used in the fields of 

intelligent tool change and tool life management for CNC 

machining in various factories. By predicting the tool wear 

value in real time, it can realize intelligent tool change in 

advance when the tool wear is at the critical threshold, thus 

improving the machining accuracy of products. 
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Abstract: 

For high-speed heavy-duty gears in operation is prone to high tooth surface temperature rise and thus produce tooth surface gluing 

leading to transmission failure and other adverse effects, but in the gear optimization design and little consideration of thermal 

transmission errors and thermal resonance and other factors, while the conventional multi-objective optimization design methods are 

difficult to achieve the optimum of each objective. Based on this, the paper proposes a gear multi-objective reliability optimisation 

design method based on the APCK-SORA model. The PC-Kriging model and the adaptive k-means clustering method are combined 

to construct an adaptive reliability analysis method (APCK for short), which is then integrated with the SORA optimisation algorithm. 

The objective function is the lightweight of gear pair, the maximum overlap degree and the maximum anti-glue strength; the basic 

parameters of the gear and the sensitivity parameters affecting the thermal deformation and thermal resonance of the gear are used as 

design variables; the amount of thermal deformation and thermal resonance, as well as the contact strength of the tooth face and the 

bending strength of the tooth root are used as constraints; the optimisation results show that: the mass of the gear is reduced by 

0.13kg, the degree of overlap is increased by 0.016 and the coefficient of safety against galling Compared with other methods, the 

proposed method is more efficient than the other methods in meeting the multi-objective reliability design requirements of 

lightweighting, ensuring smoothness and anti-galling capability of high-speed heavy-duty gears. 
Keywords: APCK-SORA model; high-speed heavy-duty gears; multi-objective reliability optimization design; k-means clustering method 

 

1 Introduction 

High-speed and heavy-duty gears are widely used in 

aerospace and aviation, the marine industry and 

high-speed trains, and gear devices of various industries 

are also developing in the direction of high speed, heavy 

load and light weight. The surrogate model technique 

converts the actual complex structural problem into an 

approximate mathematical problem to be solved, which 

not only improves the computational efficiency of the 

optimised design model, but also allows the performance 

of the whole structure in the design space. Omar D. M et 

al 
[1] 

can change the contact pattern of tooth surfaces and 

proposed a structured optimisation method. Li et al 
[2]

 

proposed a multi-objective ant colony optimisation model 

for improving the meshing performance and dynamic 

characteristics of gear transmission systems for 

high-speed heavy-duty herringbone gears used in the 

marine sector. Zhao et al 
[3] 

used the potential energy 

method to study the effect of tooth root cracking on gear 

meshing stiffness. Daniel et al
 [4]

 used a genetic algorithm 

to optimise the parameters of normal load, sliding speed 

and friction coefficient of a gear pair with multiple 

objectives and carried out an analytical calculation of the 

transmission efficiency of the gear. Dixit et al
 [5]

 used 

CRITIC (Criteria Importance through Intercriteria 

Correlation) method and Genetic Algorithm (GA) to 

obtain the optimal solution for multi-objective 

optimization considering the weight of the gear pair, 

power loss and gear heat treatment time. Maruti et al. 
[6]

 

used an improved non-dominated sorting genetic 

algorithm (NSGA-II) to perform multi-objective 

optimization of three different gear profiles (unmodified 

profiles, smooth engagement profiles and high 

load-bearing energy profiles) and four ISO oil grades at 

two speeds. Edmund et al
 [7] 

carried out a multi-objective 

optimal design of a two-stage straight cylindrical gearbox 

with volume, power output and centre distance as 

objectives. Emna et al
 [8]

 considered both micro and 

macro parameters of gears, and used genetic algorithm to 

optimize gears for multi-objective optimization. Ekansh 

et al 
[9]

 carried out a multi-objective optimization of gears 

considering production cost, gear strength and noise 

impact parameters. Zhang 
[10] 

proposed a new 

collaborative strategy (C-RBMDO), which is a 

combination of a performance metric approach (PMA) 

and a parallel subspace optimization strategy (CSSO) and 

decouples the SORA for multidisciplinary optimal design 

of gears. At present, the sequence optimisation and 

reliability assessment methods are mainly based on the 

primary second order moment theory method for 
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reliability analysis calculation, which has limited 

computational efficiency and accuracy. Some scholars 

have used different reliability methods in combination 

with SORA to make up for their shortcomings. For 

example, Cho and Lee
 [11]

 used a convex programming 

approach to transform the reliability optimisation column 

into a series of subplanning columns in a convex design 

domain, and introduced the hybrid mean value method 

(Hybird Mean Value,) to improve the computational 

performance of the SORA method. Du et al. 
[12] 

proposed 

a new search format for MPTP points to improve the 

robustness of the SORA method.On this basis, Cheng et 

al. 
[13]

 used the change of Angle in the iteration process to 

determine the convergence performance of MPTP search, 

and proposed to reduce the calculation times of non-tight 

constraint reliability information and improve the 

calculation efficiency of SORA by using the feasibility 

determination method of probability constraints. Ilchi 
[14]

 

used sequence optimization and reliability analysis 

(SORA) to reduce the RBDO based on an improved 

adaptive chaos control method computational cost, a 

two-step improved adaptive chaos control method 

(DS-MACC) was proposed to speed up the cycle of 

reliability analysis. Subsequently, Ilchi 
[15] 

proposed a 

sequential optimisation and reliability analysis (SORA) 

method based on a PMA method for selecting adaptive 

step sizes at normalised locations and negative gradient 

vectors at two consecutive iteration points. Kaveh A 
[16]

 

used sequential optimization with reliability assessment 

(SORA) as a decoupling method and proposed a 

reliability design optimization (RBDO) framework based 

on a meta-heuristic algorithm for decoupling methods. 

Kaveh A
[17]

 used reliability-based design optimization 

(RBDO) to deal with these uncertainties and proposed to 

apply the sequential optimization with reliability 

assessment-dual meta-heuristic (SORA-DM) framework 

applied to RBDO of frame structures. 

When high speed and heavy loads are applied to 

gears, the relative sliding between the tooth surfaces 

creates a lot of frictional heat, which raises the 

temperature of the gear teeth and alters the thermal 

expansion characteristics of the gear material. This leads 

to changes in the theoretical involute of the tooth profile 

and heat transfer errors of the gear, which have a negative 

impact on the accuracy, smoothness, and noise level of 

the transmission. In order to solve such problems, an 

adaptive surrrogate model-based reliability optimisation 

method based on an improved SORA optimisation 

algorithm with an adaptive PC-Kriging model is proposed. 

Firstly, a new adaptive structural reliability analysis 

method (referred to as APC-Kriging) is constructed by 

combining the PC-Kriging model with an adaptive 

k-means clustering method. Secondly, the proposed 

adaptive PC-Kriging model is used to solve the reliability 

part of the SORA optimisation algorithm and then to 

optimise the design by SORA. In order to achieve a 

multiobjective optimised design for the reliability of high 

speed heavy load gears with lighter volume, better 

transmission smoothness and anti-galling capability. 

2 High-speed heavy-duty gear model 

considering the effect of temperature rise 

To improve the transmission accuracy, smoothness and 

load carrying capacity of high-speed heavy-duty gears, a 

finite element analysis of gears considering temperature rise 

is carried out, i.e. a thermal analysis of gears based on 

thermal-structural coupling. For the thermal analysis, 

Solid70 three-dimensional solid units are used, and the 

material properties such as heat transfer coefficient, heat 

flow density, modulus of elasticity, specific heat capacity and 

related boundary conditions are set. The model is divided by 

sweeping the mesh, and only the mesh refinement of its 

mesh surface, while the rest of the mesh density can be 

relatively sparse, divided into the master gear and driven 

gear of the finite element model as shown in Figure 1, the 

relevant loading coefficients are shown in Table 1. 

Table 1  Loading factors 

Modulus of 

elasticity 

Poisson's 

ratio 

Thermal 

conductivity 

Heat flow 

density 

Linear expansion 

coefficient 

206 0.3 29.7 542.2 10.36 

 

Figure 1  The three-dimensional solid model of the gear 

pair after meshing 

According to the literature 
[18]

, the heat flow density 

and convective heat transfer coefficients are calculated for 

each face of the gear and are applied simultaneously to 

the meshing face of the gear, and the convective heat 

transfer coefficients are applied to the non-meshing, top 

and root faces of the gear as well as the end face of the 

gear with relevant settings, and finally the steady-state 

temperature field of the gear is solved. The steady-state 

temperature field clouds of the driven and driven gears 

are shown in Figure 2(a) and (b). 

 
Cloud of active wheel temperature field distribution  
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Cloud of driven wheel temperature field distribution 

Figure 2  Steady Temperature Distribution of gear 

As can be seen from Figure 2, the maximum 

temperature on the meshing tooth surface of the active 

gear is (195.702°C) and the maximum temperature on the 

meshing tooth surface of the driven gear is (169.433°C), 

and the high temperature areas on the meshing tooth 

surface of both the active and driven gears are found near 

the root and the top of the teeth, which is due to the fact 

that the contact compressive stress between the teeth and 

the relative sliding speed between the teeth during the 

transmission process of the gears is greater in these two 

areas. Because in the process of gear transmission, the 

product of the contact compressive stress between the 

tooth surfaces and the relative sliding speed between the 

teeth is large at these two places, and then more friction 

heat input is generated, which is consistent with the fact 

that gear gluing usually occurs near the root of the driving 

wheel or near the top of the driven wheel. It can be 

proved that the analysis method of gear steady-state 

temperature field is correct and effective. 

3 Mathematical model of APCK-SORA 

An adaptive structural reliability analysis method 

based on a combination of PC-Kriging and adaptive 

k-means (referred to as APC-Kriging) is proposed. Firstly, 

PC-Kriging is an improved Kriging algorithm whose 

regression basis function uses a sparse polynomial 

optimal truncation set to approximate the global 

behaviour of the numerical model, and Kriging is used to 

handle local variations in the model output, which 

improves the computational efficiency while ensuring 

accuracy. Secondly, while common reliability methods 

collect sample points one by one, the adaptive k-means 

clustering analysis in this paper divides the space into 

several regions and selects an optimal sample point from 

each region, thus enabling multiple regions to 

simultaneously achieve the aim of improving the accuracy of 

the PC-Kriging model, thus again improving the 

computational efficiency of the model. Finally, the proposed 

adaptive PC-Kriging model is combined with SORA to 

construct a multi-objective reliability optimisation method 

based on the adaptive surrogate model. 

3.1Adaptive PC-Kriging reliability model 

The adaptive PC-Kriging method uses a k-means 

cluster analysis approach to ensure that a number of 

sample points that contribute significantly to the 

probability of failure are added at each iteration. The 

main steps of the proposed adaptive PC-Kriging method 

for selecting sample points are as follows: 

Step 1 t=0. The initial experimental design sample 

points are generated by random sampling of the Latin 

hypercube and the corresponding functional response 

values are computed exactly, i.e. , . Let the initial 

number of sample points be M0 , then we have

, . 

Step 2 t=t+1, generating K points by Markov chain 

Monte Carlo simulation (MCMC) on . Given

 , a random vector of M dimensions obeying f(x) 

(f(x) is the joint probability density function of x) and 

satisfying equation (1) is generated using the MCMC 

method, then the randomly selected points are considered 

to be on . The random extraction process stops 

when the number of extracted points reaches K. The 

random vector generated is  , and 

in this paper, let K be 2000 and [ε] be 0.01. 

                (1) 

Step 3 The k-means cluster analysis method is used 

to divide  into k categories and map the centroids of 

these k categories onto . Let  

denote the k clustering centres. When  is a 

non-linear surface, it is not guaranteed that the centroids 

of the k categories are all on  , and it is 

necessary to map the centroids that are not on  

to . The mapping is done by finding the points 

that satisfy equation (2) and obtaining

, where  is the design point 

for . 

               (2) 

where i=1,2,...,k. 

Step 4 Adjust the positions of the points in the set 

St-1. Define the distance D0 as shown in equation (3) and 

assume that if the distance between any two sample 

points in the set St-1 is less than D0 it is considered 

unacceptable and the location of individual points in the 

set St-1 needs to be adjusted. 

         (3) 

where e is a given constant. 

There are two possible scenarios for the points in the 

set St-1: 1. the distance between some points within St-1 

may be too small. It is more likely that the distance 

to some point in  is small; 2. The distance 

between some point in St-1 and some point in Xt-1 is too 

small. If case 1 occurs, e.g. the distance between  

and  is less than D0 , the position of the point with 

the smaller probability density function is to be changed 

and the position of the point with the larger probability 

density function is to be left unchanged; if case 2 occurs, 

the corresponding point in St-1 is to be changed. The 
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sample points are adjusted by assuming that the position 

of  is to be changed first. The points in  are 

arranged in ascending order of distance from  and

 is changed to the new sequence of points in turn 

until the distance between  and all points in St-1 and 

Xt-1 is greater than D0 . 

Step 5 Calculate the value of the function 

corresponding to each sample point in the set S. 

,  (4) 

Step 6 Calculate  ,  based on Ωt and 

combining Eqs. (1) and (2). If the convergence condition 

of equation (4) is satisfied, the iterative process stops and

 is the estimated value of Pf ; otherwise, return to step 

2 until  satisfies the convergence condition. 

                 (5) 

where Nun is the total number of samples with sign 

prediction errors, Nfail represents the total number of 

failed samples, and α is the permissible error of , where 

          (6) 

                (7) 

In this case, sample points with a high probability of 

symbol prediction error are indicated by , and such 

points can be considered as certain failure points. Sample 

points with a high probability of symbol prediction error 

are indicated by , and the total number of failure 

prediction errors for such sample points can be indicated 

by . In this study, P=1, Q=2 and α=0.03. 

3.2 Development of the APCK-SORA mathematical model 

Firstly, PC-Kriging is used to approximate the global 

behaviour of the numerical model, and Kriging is used to 

deal with local variations in the model output. Secondly, 

adaptive k-means cluster analysis is used to divide the 

space into several regions and select an optimal sample 

point from each region, so that multiple regions can 

simultaneously achieve the objective of improving the 

accuracy and computational efficiency of the PC-Kriging 

model. Finally, in combination with the SORA 

optimisation strategy (i.e. separating the reliability 

assessment from the optimisation design), the model 

converges and obtains an optimal solution with a small 

number of cycles, making the solution of complex 

optimisation design problems simple and efficient. 

The mathematical model for APCK-SORA based 

reliability optimization is: 

(8) 

where  

The reliability analysis section is then solved using 

the APC-Kriging proposed in section 3.1. It is determined 

whether the reliability requirements are met and if not, a 

deterministic optimisation model is constructed for the 

next cycle. 

3.3 Solving steps for APCK-SORA 

In each cycle of SORA, deterministic optimisation is 

first carried out, followed by reliability analysis. the basic 

flow of the APCK-SORA method (Figure 4) and the main 

steps are shown below: 

(1) The initial experimental design sample points 

were first generated by random sampling of the Latin 

hypercube, and the corresponding functional response 

values were calculated exactly, i.e.  ,  . Let the 

initial number of sample points be M0 . 

(2) Solve for deterministic optimization. Set the 

initial value of the optimisation design variable to

 and the superscript 0 to indicate that no 

reliability analysis has been performed. Starting from the 

1st cycle, get  and  in the deterministic 

optimization to build a completely new optimization 

calculation model. 

(3) Perform a reliability analysis at the optimal 

design points  ,  obtained in the deterministic 

optimization and find the corresponding . 

(4) Test for feasibility and convergence. If all 

reliability constraints and deterministic constraints are 

satisfied and the system objective function values 

converge,  ,  to a 0.001, then the 

reliability optimization process stops. Instead, calculate

 based on the current MPP, adjust the position of the 

design variable  to ensure that the constraint boundaries 

are within the feasible domain, and go to step (3). 

 

Figure 3  The flow diagram of APCK-SORA 
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4 Multi-objective reliability optimisation of 

high-speed heavy-duty gears design 

4.1 Objective function 

(1) Minimum sum of masses of gear pairs 

Considering the involute straight cylindrical gear as 

a cylinder, the diameter as its index circle diameter and 

the height as the tooth width, the total mass of the drive 

system is: 

        (9) 

(2) Maximum overlap 

In order to ensure the continuity of the gearing, the 

degree of overlap ε must be greater than or at least equal 

to 1. The greater the value of ε, the better the continuity 

of the gearing and the smoother the transmission. 

  (10) 

Where  , ,  are 

the top circle diameters and  are the base circle 

diameters. 

(3) Maximum resistance to gluing 

The instantaneous contact criterion (Blok flash 

temperature method) considers that the hot glue damage 

is caused by the high temperature generated by friction at 

the contact point, which ruptures the lubricant film and 

causes a sharp increase in the coefficient of friction, 

resulting in a higher temperature and the formation of a 

sticky weld between the metals, which tears open the weld 

joint due to the relative movement and thus forms the glue 

damage. In engineering, the Blok flash temperature method 

of hot bonding strength conditions are: 

            (11) 

The factor of safety for gear gluing strength is given 

by Eq: 

               (12) 

Where:  is the maximum contact temperature 

on the engagement surface, °C;  is the body 

temperature, °C;  is the maximum flash temperature 

on the contact surface, °C;  is the critical gelling 

temperature, °C;  is the lubricant temperature at 

thermal steady state, °C. Since the limiting temperature of 

the lubricant is 220°C, the critical bonding temperature is 

set to 220°C in this paper. Where  and  are 

obtained through finite element simulation, the greater the 

safety factor of gear gluing strength  , the greater the 

resistance to gluing, which means that the maximum 

contact temperature of the meshing surface  should 

be lower. 

4.2 Design variables 

The number of teeth, modulus and tooth width of the 

active and driven gears are selected as the optimisation 

design variables, while the other basic design parameters 

of the gearing system remain unchanged: 

          (13) 

4.3 Constraints 

(1) Heat deflection constraint 

In order to avoid the thermal deformation of high 

speed heavy duty gears leading to "jamming" of the 

gearing, it is necessary to ensure that the thermal 

deformation of the gear is less than the minimum side 

clearance of the gear (the amount by which the width of 

the tooth groove on the pitch line is greater than the tooth 

thickness). 

       (14) 

           (15) 

where  is the minimum side clearance of the gear,

 is the centre distance and  is the maximum 

tooth deflection from the ANSYS simulation. 

(2) Thermal resonance frequency constraint 

According to the resonance principle, the gear rotor 

will resonate when the excitation frequency is close to or 

equal to the intrinsic frequency. According to reliability 

disturbance theory, the state function for random 

structural failure analysis is: 

           (16) 

Geared rotor systems constructed to avoid resonance 

            (17) 

where p is the excitation frequency;  is the ith intrinsic 

frequency,  is 10% of the intrinsic frequency of each 

order of the gear rotor. 

(3) Gear ratio constraint 

The transmission ratio is the ratio of the angular 

velocities of the two involute gears. The optimised design 

(lightweighting) will result in a change in the number of 

teeth of the gear pair, which needs to be constrained in 

order not to affect the transmission ratio of the gear pair. 

                 (18) 

        (19) 

Where, i12 is the ratio between the active and driven 

gears,  and  are the number of teeth of the active 

and driven gears respectively. 

(4) Centre distance constraint 

The property that the centre distance between the 

gear pairs changes while the two ratios remain unchanged 

is known as the divisibility of involute gears. However, 

considering the overall dimensions of the gearbox, the 

centre distance of the gear pairs is therefore constrained. 

                (20) 

               (21) 
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Where  is the change in the initial and optimised 

centre distance between the gear pairs,  is the initial 

centre distance between the gear pairs and a is the 

optimised centre distance between the gear pairs. 

(5) Variation factor constraint 

In the optimised design of gears the number of teeth 

and modules may be improved, resulting in the theoretical 

centre distance being unequal to the actual centre distance, 

when it is often necessary to adjust the coefficient of 

variation to meet the centre distance constraint. Where the 

total coefficient of variation is: 

         (22) 

             (23) 

Where,  is tooth angle,  is engagement angle, a 

isideal centre distance,  is actual centre distance. 

For the assignment of the coefficient of variation, 

due to the high speed of high-speed heavy-duty gears, the 

coefficient of variation of involute straight cylindrical 

gears is assigned using the method of gluing failure
[18]

 

Constraint on it 

    (24) 

Where  is the total displacement factor, x1 , x2 are 

the displacement factors of the master and driven gears 

respectively, and i is the transmission ratio. 

(6) Number of teeth constraint 

Considering the minimum number of teeth required 

for gearing and the distribution of ratios, the number of 

teeth of the master and driven gears is taken as an integer, 

and the minimum number of teeth for a standard straight 

cylindrical gear without heel tangency is 17, so the range 

of values is as follows:

. 

where  is the number of teeth of the main and 

driven gears respectively. 

(7) Modulus constraint 

Modulus m is a basic parameter of gears, the larger 

the modulus, the larger the tooth pitch of the gear, the 

modulus of standard straight cylindrical gears has been 

standardized, the modulus selection range is as follows: 

m=(1.0,1.25,1.5,1.75,2.0,2.25,2.5,2.75,3) 

Referring to the mechanical design manual take the 

modulus greater than or equal to 2.5, i.e:

. 

(8) Tooth width constraint 

Calculated from the tooth width of the large gear 

(driven wheel) b2 =Φd *d2 , which should be rounded off 

and used as the tooth width of the large gear. Required 

tooth width of the pinion (active wheel): b1 = b2 + (0.5 to 

1.0) mm. 

                 (25) 

            (26) 

Where Φd is the tooth width factor and d1 is the 

pinion indexing circle diameter. 

(9) Strength constraints for gears 

Strength constraints for gears include gear contact 

strength constraints and tooth root bending strength 

constraints. The tooth contact strength is related to the 

tooth contact stress and the permissible contact stress. 

The constraint function for the contact strength of 

the tooth surface  is: . 

The root bending strength is related to the 

permissible bending stress of the gear material. The 

constraint functions for the root bending strengths  

and  of the pinion and large gears respectively are: 

            (27) 

4.4 Reliability optimised design of gears 

The mathematical model for reliability optimisation 

of thermally-structurally coupled gears is: 

  (28) 

where  ,  and  are the 

deterministic optimisation solution and the most probable 

point (MPP) obtained from the previous loop, respectively. 

A reliability analysis is performed at the most probable 

point to calculate the MPP point in the probability 

constraint  and the shift vector for the next 

loop constraint , which in turn constructs the 

deterministic optimisation model for the next iteration. 

The specific steps for the optimal reliability design 

of thermally-structurally coupled gears are as follows: 

(1) The objective function is first defined. 

   (29) 
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The objective is to minimise the mass of , 

maximise the degree of overlap  and maximise the 

coefficient of safety against gluing  according to the 

design requirements and to satisfy the constraints. 

Considering the 3 design requirements 

simultaneously, uses a linear weighted combination 

method to convert the 3 sub-objective functions into a 

single objective optimization function  , such that 

     (32) 

where  (i=1,2,3) denotes the weighting factors ,

 and therefore min  as 

the final optimisation target. 

(2) The initial sampling in the design space is carried 

out using the Latin square design of experiments method 

and the corresponding response values are calculated at

. For  and  , the equations are calculated 

and for   is used to obtain the maximum 

contact temperature of the meshing surfaces by a 

MATLAB call to ANSYS software for coupled 

thermal-structural analysis of the gear. 

(3) Construct PC-Kriging approximation models for 

the objective and constraint functions. The deterministic 

optimal design is then based on the current approximate 

model to obtain the current optimal solution. At the initial 

first iteration step, set . 

(4) Given μX, σX, a reliability analysis is performed 

by the adaptive PC-Kriging reliability method to obtain 

the  point. The optimised solution is transformed 

from the design space into the coordinate space where the 

random variable X is located to obtain its response value 

i.e. the current minimum value Gmin If more than one 

constraint exists, each constraint function will obtain a 

minimum value Gi,min (i=1,...,N). 

(5) The best sample points are selected using the 

adaptive PC-Kriging method and added to the initial 

sample to reconstruct the PC-Kriging model. 

(6) Update all sample points to construct the 

PC-Kriging approximation model and find all constrained 

MPP points. If at this point all , and 

the objective function value does not change much, then 

stop the iterative process that is the final result; 

otherwise if there is any , otherwise,  , 

then based on the current result return to step (4) to 

re-optimize the solution. 

The final optimisation results obtained through two 

iterations of the optimisation design are shown in Table 2. 

As can be seen from Table 2, the adaptive agent 

model's optimised design approach (APCK-SORA) is 

used to optimise the reliability design of high-speed 

heavy-duty gears. Firstly, a feasible domain of gear 

modulus, number of teeth and tooth width satisfying the 

conditions is selected based on the constraints of gear 

modulus, number of teeth, transmission ratio and strength. 

On the basis of this, optimisation is carried out for the 

objective functions of minimising the sum of the masses 

of the gear pairs, maximising the degree of overlap and 

maximising the resistance to galling. The optimisation 

results are shown in Table 2. It can be seen that the 

number of teeth of the master and driven wheels has been 

increased, but the modulus has been reduced from 3 mm 

to 2.75 mm, and the width of the master and driven 

wheels has been reduced. In order to meet the centre 

distance constraint, the optimised master and driven gears 

were machined using a positive displacement method. 

The result of the optimisation is a reduction in mass of 

0.13kg, an increase in the degree of overlap of 0.016 and 

an increase in the coefficient of safety against galling of 

0.19. This achieves the optimised design objectives of 

light weight, smoothness of transmission and maximum 

reliability against galling. 

Table 2  Comparison of results before and after 

optimization 

Reference items Initial value Results of one iteration 
Optimal 

results 

m(mm) 3 2.75 2.75 

z1 20 20 22 

z2 34 34 36 

b1 (mm) 15 14.7 14.0 

b2 (mm) 14.5 13.9 13.5 

Mass (kg) 1.26 1.15 1.13 

Overlap 1.618 1.628 1.634 

Anti-glueing safety 

factor 
1.24 1.38 1.43 

Table 3  Comparison of different optimization results 

Reference items 
SAP with 

PMA 
SORA SLA 

The proposed 

method 

Number of 

iterations 
308+5 296+2 265+4 53+2 

m(mm) 2.75 2.75 2.75 2.75 

z1 20 20 20 20 

z2 34 34 34 34 

b1 (mm) 14.8 14.7 14.8 14.7 

b2 (mm) 14.0 13.9 13.8 13.9 

Mass (kg) 1.16 1.15 1.15 1.15 

Overlap 1.628 1.628 1.628 1.628 

Anti-glueing safety 

factor 
1.39 1.38 1.37 1.38 

The first row of data in Table 3 is 308/5, which 

means that the number of optimisation iterations is 5 and 

the number of iterations to build the maximum contact 

temperature model for the meshing surface is 308. It can 

be seen from the comparison that the optimisation results 

obtained using the four algorithms are basically the same, 

but the proposed method only requires 53 iterations to 

complete the construction of the maximum contact 

temperature model for the meshing surface, and the 

parameters are optimised by two optimisation iterations, 

which has a higher computational efficiency. 

3
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t t
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5 Conclusion 

An adaptive PC-Kriging model is proposed to 

improve the reliability part of the SORA optimization 

algorithm for multi-objective reliability optimization 

design of high-speed heavy-duty gears with an adaptive 

agent model. The objective functions of minimizing the 

sum of gear pair masses (lightweighting), maximizing 

degree of overlap (ensuring smooth transmission), and 

maximizing strength against galling are utilized to 

achieve multi-objective reliability optimization design for 

high-speed heavy-duty gears. 

Comparing the proposed method with other 

optimization algorithms, it can be seen that while the final 

optimization results are essentially the same, the overall 

efficiency of modeling and optimization has been greatly 

improved. The proposed method has significant 

engineering value and is particularly well-suited for 

addressing reliability optimization problems in practical 

engineering applications, which typically require 

substantial investments of time and resources to construct 

an optimal model. 

High-speed heavy-duty gears are inevitably affected 

by a variety of random factors during operation, such as 

fluctuations in external loads, changes in the environment 

and changes in the thermophysical properties of gear 

materials. Future research should consider the 

multi-objective optimization of gear design for dynamic 

reliability of relevant parameters over time. 
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