

桥梁钻孔灌注桩后压浆施工技术与承载力提升研究

刘伟

青海省公路工程咨询监理有限公司, 青海 西宁 810000

[摘要]桥梁钻孔灌注桩后压浆施工对提高桩体承载力和保障结构稳定性起着关键作用。依据施工经验,探究了后压浆施工的技术关键,包含浆液配制方式、分段压浆操作、注入工艺手段以及质量控制办法,还分析了其对桩身承载性能的增强效果。恰当的后压浆施工可有效填补桩孔和土体间的空隙,增大桩端及桩身的摩阻力,提高桩体整体的稳定性,为桥梁基础设计施工给予科学参考。

[关键词]桥梁基础;钻孔灌注桩;后压浆;承载力提升;施工技术

DOI: 10.33142/sca.v8i8.17611 中图分类号: TU47 文献标识码: A

Research on the Construction Technology and Bearing Capacity Enhancement of Bridge Drilling and Grouting Pile after Grouting

LIU Wei

Qinghai Highway Engineering Consulting and Supervision Co., Ltd., Xining, Qinghai, 810000, China

Abstract: The post grouting construction of bridge bored pile plays a key role in improving the bearing capacity of the pile and ensuring the stability of the structure. Based on construction experience, the technical key points of post grouting construction were explored, including slurry preparation method, segmented grouting operation, injection process, and quality control methods. The enhancement effect on the bearing performance of the pile body was also analyzed. Proper post grouting construction can effectively fill the gaps between pile holes and soil, increase the frictional resistance of pile ends and shafts, improve the overall stability of piles, and provide scientific reference for bridge foundation design and construction.

Keywords: bridge foundation; drilled pile; post grouting; capacity enhancement; construction technology

引言

桥梁工程作为交通基础设施里的重要一环,基础施工质量直接决定桥梁整体安全和使用时长。鉴于钻孔灌注桩施工适应性良好且承载力高,普遍用于桥梁基础。然而,桩体施工结束后,桩孔和周围土体或许存在细微空隙,这会削弱桩体与地基的整体协同力,进而限制桩体承载力的充分施展。后压浆施工技术作为一种高效的桩体补强方法,能在灌注桩完工后注入高性能浆液来加固桩体,促使桩体与土体形成更紧密的一体化结构,增强承载力与桩体稳定性。本文针对桥梁钻孔灌注桩后压浆施工技术展开研讨,归纳其施工方式、质量把控以及对承载力提高的成效,为工程实践提供参考。

1 后压浆施工原理

后压浆施工关键是运用具备高流动性和高填充性的浆液,将其注入桩孔与周边土体间的空隙,让桩体与地基紧密结合起来。此过程不只是桩体施工结束后的补强举措,更是增强桩体承载力与结构稳定性的核心步骤。在施工过程中,压力驱使浆液沿桩身四周均匀渗透,形成连贯的补强层,由此提高桩身与土体的摩擦阻力,让桩端负荷更均匀地分散到土体里。均匀受力的状况能有效缓解桩端局部应力集中现象,缩小沉降差异,增强桩体整体稳固性[1]。

同时,后压浆施工使浆液与桩身及周边土体相结合,

形成了桩-浆-土整体结构。该整体性结构不仅增强了桩体与土体的界面结合强度,还强化了桩身抵抗侧移和倾覆的能力,使桩体在承受桥梁上部结构荷载时能更好地体现力学性能。当处于软土或者孔隙大的土层环境中,原始灌注桩和土体之间或许存在微小空隙,若不实施后压浆处理,桩体受力过程中易发生沉降、偏移或局部失稳现象。采用后压浆工艺,浆液可充分填满这些空隙,构建高强度的结合层,大幅降低桩体沉降与位移,增强基础承载能力。

2 施工技术要点

2.1 浆液配制

在桥梁钻孔灌注桩后进行压浆施工期间,浆液的配制情况是影响施工成效的关键因素。后压浆的主要目标为借助浆液填充桩周土体跟桩身之间的微小缝隙,构建稳固的桩-浆-土一体化结构,进而增强桩体的承载能力和长期稳固性。因此,浆液要拥有高流动性、早期强度提升迅速、泵送性能佳以及低收缩性等特质。凭借高流动性,浆液可顺利渗透进桩周微缝隙,即便桩周岩土存在不均匀状况或微小孔隙,浆液仍可充分填充,杜绝"空腔"现象产生,保障桩体与土体紧密结合。早期强度增长迅速有助于施工完毕后浆液迅速凝结,促使桩体早期承载能力及时增强,保障后续桥梁施工不受桩体沉降干扰顺利开展。良好的泵送性能可保障浆液在长距离输送和高压注入时不会出现

管道堵塞或浆液分层现象,进而保障施工的连续性与均匀性[2]。

2.2 分段压浆

在深桩或大直径桩施工中,单次注浆通常难以让浆液在整个桩周均匀散布,易产生局部空隙或压浆不充分的情况。因此,分段压浆成为保障施工质量的核心技术,分段压浆基本做法为沿桩体纵向划分出若干施工段,逐段依次开展注浆作业,且在注入时逐渐增大压力,让浆液充分渗入桩周土体,形成连续且密实的补强层。该方法既能调控注浆压力,规避高压引发的桩体位移与土体扰动问题,还能使每一段的浆液都得到充分填充,以此提高桩-土整体结合力。在实际施工时,施工单位要依据桩长、土层分布以及注浆泵能力来明确段长与注浆顺序,每段注浆结束后一般安排短期养护时段,让浆液凝固初步达成补强成效,接着开展下一段注浆,以此保障整体浆液充盈率。

2.3 注入工艺

注浆管布置和移动的方式,是后压浆施工里决定桩体 承载力提升成效的关键要素之一。钻孔灌注桩施工完毕后, 桩体跟周边土体间往往存在一些细微空隙或孔隙,若后压 浆时浆液不能充分渗入这些空隙,极有可能引发局部未填 满、浆液分层或者桩周结合不紧实的问题,进而影响桩体 摩阻力和桩端承载力的发挥。因此,注浆管合理布置且科 学移动,是保障浆液均匀散布、形成完备桩-浆-土整体架 构的重要基础。

在实际施工时,一般采用让注浆管沿着桩身逐段上下移动的方式。具体的操作流程如下:把注浆管放到桩顶处,慢慢下沉到设计位置,各段注浆均按照规定压力与流量注入,让浆液均匀渗入桩周土体的空隙,完成注浆操作后,让管道慢慢往上移动或者按照设计段落进行水平偏移,保障浆液可充分覆盖桩周区域,防止漏浆或局部空洞出现。将分段注浆与上下移动结合起来的办法,既能提升浆液注入的均匀性,又能有力管控注浆压力,防止因压力过高引发桩身位移或土体扰动。

在注浆作业期间,施工人员要实时监测注浆压力与流量。这是保证浆液充盈率以及施工质量的紧要环节,依靠压力监测,能判定浆液是否成功渗入桩周土体;流量监控能让每段注浆的浆液量与设计要求相契合,若监测表明压力不正常或流量不够,需马上调整注浆泵输出参数,也或对注浆管在桩孔中的位置作出调整,杜绝局部空隙形成。若未及时进行调整,或许会造成浆液在桩周分布不均衡,致使桩体摩阻力与桩端承载力下降,危及桥梁基础整体稳定性^[3]。

对于深桩或者倾斜桩而言,单根注浆管通常难以实现 浆液的均匀渗透。面对此情形,可运用多根注浆管同步注 浆或者循环注浆的方式。多根管道同步注浆能扩大桩周空 间的覆盖范围,让浆液分布更为均匀;循环注浆可在一次 注浆结束后,重新安置注浆管开展二次或多次注浆,保证 浆液充分渗透到土体微孔隙中,增强补强成效。特别是处 于高地下水位或者松散土层的环境时,循环注浆能补充一 次注浆未能渗透的区域,进而提升桩体的承载力与稳定性。

2.4 质量控制

后压浆施工的质量把控在桥梁钻孔灌注桩施工中极为关键,能保障桩体承载力提高和长期稳定.钻孔灌注桩施工完毕后,桩体和周边土体间或许存在细微空隙或孔隙,若浆液注入不足或注浆压力调控不佳,会直接对桩体与地基的紧密结合造成影响,从而对桩体摩阻力、桩端承载力以及基础整体稳定性造成影响。后压浆施工期间,执行全程、科学又严格的质量把控措施,对保障桥梁基础结构的安全起着关键作用。

在观测桩体沉降,能直观展现桩体在注浆时的受力与位移状况。沉降观测一般运用高精度水准仪、激光测距仪或者自动监测系统,对桩顶以及关键截面进行实时测定。若桩体沉降超出设计许可值,或意味着浆液注入不均,或反映注浆压力设置欠妥,要马上调整注浆管位置、注浆压力或者流量,让浆液能充分渗透桩周土体并实现紧密结合。沉降观测能协助施工人员评估不同土层与桩体的相互反应,迅速察觉潜在隐患,实施补救手段,防止桩体在后续荷载作用时产生异常沉降或倾斜^[4]。

对注浆压力的监测是质量控制的又一核心要点。后压浆施工期间,要严格把注入浆液的压力控制在设计区间,一方面要保证浆液可顺利渗入桩孔与土体间空隙,又要防止因压力过大导致桩周土体受扰或桩身移位。一般运用压力传感器对注浆管端压力变化进行实时监测,同时配合流量计监控浆液输送情况,若监测数据呈现异常状况,如压力过高或者流量不足,施工人员要立刻对注浆泵参数进行调整或重新布置注浆管的位置,避免局部空隙或浆液分布不均问题出现。

此外,对浆液性能的质量把控同样不容小觑。后压浆浆液应具备高流动性、优良泵送性能和快速早期强度等特点,保证注入时能充分填满桩周空隙,固结后提供充足承载能力。因此,施工前期和施工期间,要对浆液样品的流动性、密度、凝结时间及早期抗压强度等指标进行检测,涉及流动性、密度、凝结时间与早期抗压强度等指标。严格把控浆液性能,能让注入桩体的浆液在固结后与桩身、土体形成一体化结构,增强桩体摩阻力与桩端承载力,同时降低后期出现沉降和位移的风险^[5]。

2.5 承载力提升效果

后压浆施工可明显提升钻孔灌注桩的承载能力,特别是在软土区域以及土体孔隙丰富的地层中,其效果更为显著。在传统钻孔灌注桩施工完毕后,因桩体和周围土体间或许存在微小空隙,且孔隙未完全填满,桩-土整体结合力欠佳,致使桩体摩阻力和桩端承载力难以充分施展。在

此情形下,桩体承受上部结构荷载时易出现沉降过度、荷载传递不均衡或局部应力聚集的状况,由此影响到桥梁基础的稳定与安全。后压浆施工借助高流动性浆液填充桩周的空隙,促使桩体与土体形成一体化结构,切实提升了桩周摩阻力和桩端承载力,从根本上化解了这一难题。

在实际施工过程中,后压浆施工可大幅优化桩体受力性能。浆液灌入桩孔与土体的缝隙后,借助压力让桩周土体与桩身紧密相连,形成连贯的补强层,增强桩周摩阻力。这种强化效果并非仅体现在桩体承载的初始阶段,也就是在桥梁施工时,桩体可承受设计荷载且不会产生过大沉降;同时,经过长时间的运行,因桩-浆-土整体结构构建完成,桩体极限承载力明显提高,桥梁基础的整体稳定性与抗倾覆能力也得以增强。在软土或流塑土层,后压浆的效果十分显著,原因是这些土层孔隙率大,原本桩体与土体的结合较为松散,实施后压浆能有效填充孔隙,减少土体位移,提升摩阻力和抗剪承载力。

此外,经施工监测和荷载试验对比分析可知,后压浆施工能让桩体极限承载力提升大致 10%~25%,此提升幅度受土层性质、桩径和桩长等因素影响而有差异。例如,在黏性土层里,浆液可充分渗入土体孔隙,加固成效突出;在砂土或砾石土层里,虽然桩身摩阻力提升相当明显,然而桩端承载力提升的幅度相对不大。监测数据进一步显示,后压浆施工之后桩体沉降速率大幅降低,沉降量分布更为均匀,说明桩体在荷载作用下受力状态渐趋稳定,土和桩之间的接触应力分布变得更加均匀,对桥梁结构整体安全有益^[6]。

另外,后压浆施工对桩体长期性能的改善效果也十分明显。使用期间的桩体,因上部结构荷载以及地基土体沉降,或许会出现微小位移或倾斜。后压浆造就的桩-浆-土一体化结构可有效抵御这种位移,借助增大桩周摩阻力以及桩端承载力,增强桩体抗倾覆性能与承载均衡性,减少桩体局部的过载现象以及结构应力的集中状况,以此延长桥梁基础使用寿命。借助浆液与土体的黏合,桩体与周边地基构建更紧密联系,降低桩体的震动与微小位移,提升桥梁在风载、震动等外界荷载作用时的整体稳定性与安全性。

在工程实际运用里,多项桥梁工程证实了后压浆施工的实践效果。例如,在软土地带开展的桥梁建设里,经后压浆处理的钻孔灌注桩在承载力测试里,桩周摩阻力提升大约15%-20%,桩端承载力增长约12%到22%,明显比

未压浆桩体的承载效果要好。同时,施工监测表明,后压浆显著降低了桩体的沉降量,改善了桩体受力的均匀状况,有力维护了上部桥梁结构的稳定性。开展大直径深桩施工,借助分段压浆、压力监控及多点注浆技术,既确保浆液均匀渗入桩周土体,又进一步提升了桩体承载性能,达成高效施工与结构加固双目标。

后压浆施工技术能明显增强桥梁钻孔灌注桩的摩阻力与桩端承载能力,尤其是在软土以及孔隙多的土层里效果显著。经施工监测、荷载试验和沉降观测证实,后压浆可使桩体极限承载力提升幅度达 10%~25%,并且增强桩体整体稳固性、抗倾覆能力以及长期使用效能,为桥梁基础提供可靠支撑。该技术对于保障桥梁结构安全、提升承载性能以及延长服役寿命有着重大的工程应用价值,是现代桥梁施工中必不可少的桩基优化方法。

3 结语

桥梁钻孔灌注桩后压浆施工技术能显著提升桩体承载力,增强桩身和地基的结合力,进而提高整体稳定性。借助科学配置浆液、合理划分注浆段、规范注入操作以及严格质量管控,可保障后压浆施工成效。实际工程验证,此技术可切实提升桩体力学性能,保障桥梁基础的安全性与使用寿命。未来,可融合数值模拟与施工监测技术,进一步改进后压浆施工参数,促成施工技术与承载力提升的高效契合。

[参考文献]

[1]余科宏.山区公路桥梁钻孔灌注桩施工关键技术研究[J]. 工程技术研究,2025,10(11):77-79.

[2]武泉.公路桥梁钻孔灌注桩后压浆技术分析[J].黑龙江交通科技.2025.48(4):85-89.

[3]董德全,贺江平.桥梁钻孔灌注桩分布式后压浆施工技术[J].施工技术(中英文),2025,54(6):134-138.

[4]李彬.后压浆钻孔灌注桩在公路桥梁工程中的应用[J]. 交通世界,2024(20):126-128.

[5]许佳林.基于钻孔灌注桩后压浆技术的桥梁优化建设研究[J].工程建设与设计,2024(13):120-122.

[6]范超雪.公路桥梁超大直径钻孔灌注桩桩端后压浆施工技术[J].中国公路,2024(10):108-109.

作者简介: 刘伟 (1990.1—), 毕业院校: 广西科技大学 鹿山学院, 所学专业: 土木工程, 单位名称: 青海省公路 工程咨询监理有限公司,就职单位职务:专业监理工程师, 职称级别: 中级工程师(一建公路专业)。