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Abstract: 
This work focus on the mechanical behaviors, which are related to the size effect, functionally graded (FG) effect and Poisson effect, of 
an axially functionally graded (AFG) micro-beam whose elastic modulus varies according to sinusoidal law along its axial direction. 
The displacement field of the AFG micro-beam is set according to the Bernoulli-Euler beam theory. Employing the modified couple 
stress theory (MCST), the components of strain, curvature, stress and couple stress are expressed by the second derivative of the 
deflection of the AFG micro-beam. A size-dependent model related to FG effect and Poisson effect, which includes the formulations 
of bending stiffness, deflection, normal stress and couple stress, is developed to predict the mechanical behaviors of the AFG micro-
beam by employing the principle of minimum potential energy. The mechanical behaviors of a simply supported AFG micro-beam 
are numerically investigated using the developed model for demonstrating the size effects, FG effects and Poisson effects of the AFG 
micro-beam. Results show that the mechanical behaviors of AFG micro-beams are distinctly size-dependent only when the ratio of 
micro-beam height to material length-scale parameter is small enough. The FG parameter is an important factor that determines and 
regulates the size-dependent behaviors of AFG micro-beams. The influences of Poisson’s ratio on the mechanical behaviors of AFG 
micro-beams are not negligible, and should be also considered in the design and analysis of an AFG micro-beam. This work supplies 
a theoretical basis and a technical reference for the design and analysis of AFG micro-beams in the related regions. 
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1 Introduction
Functionally graded (FG) materials are a new group of 
non-homogeneous materials and have some desirable 
performances to satisfy special features in engineering 
design [34]. By proper design, they can not only eliminate 
the stress concentration, reduce the residual stress, but 
also reduce crack driving force to improve the strength of 
structural members. In the last decade, they are commonly 
used in applications of construction, aerospace, energy 
absorption or even in biomedical sectors [26]. Many 
theoretical researches on the macroscopical characteristics 
of FG materials have been carried out based on the classical 
continuum mechanics [6, 21, 22]. 

With the rapid development of micro-technologies, 
FG materials have been broadly applied in micro-electro-
mechanical system (MEMS) and nano-electro-mechanical 
system (NEMS). Micro-scale experiments [13-14] have 
revealed the size-dependent properties of micro-structures, 
which is called size effect [33]. The classical continuum 
theory fails to express the size effects of microstructures. 

Therefore, several higher-order continuum mechanics 
theories, such as strain gradient theories, couple stress 
theory and nonlocal elasticity theory, have been proposed 
to capture the size effects in microstructures [28]. In the 
couple stress theory, the size effects of microstructures are 
interpreted by two material length-scale parameters. The 
modified couple stress theory (MCST), which contains 
one material length-scale parameter, has been proposed 
by Yang et al. (2002)[32] and widely used to investigate the 
size-dependent bending, vibration, dynamic and buckling 
behaviors of the microstructures made of homogeneous 
materials [2-4, 12, 17-18, 20]. 

In recent years, the mechanical behaviors of transverse 
functionally graded (TFG) micro-beams/plates, whose 
material properties vary along the thickness direction, 
have been investigated on the basis of MCST. Asghari et 
al. (2010)[1] investigated the size effects of static bending 
deflection and natural frequency of a TFG cantilever 
micro-beam using the Bernoulli-Euler beam theory and 
Hamilton’s principle. Reddy (2011)[23] developed nonlinear 
Bernoulli-Euler and Timoshenko micro-beam theories, 
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which can consider the Poisson effect and the von Kármán 
geometric nonlinearity, to study the size effects and FG 
effects of bending deflection, natural frequency and 
buckling of a simply supported TFG micro-beam based on 
the principle of virtual displacements. Ke et al. (2011, 2012a, 
2012b)[9-11] investigated the size effects and FG effects of 
bending, free vibration and buckling characteristics of TFG 
composite micro-beams/plates with different boundary 
conditions using the Hamilton’s principle. Salamat-Talab 
et al. (2012)[24] analyzed the size effects, FG effects and 
Poisson effects of the deflection, rotation and natural 
frequencies of a simply supported TFG micro-beam 
utilizing a third-order shear deformation beam theory, 
Hamilton’s principle and series method. Thai et al. (2015)
[27] studied the size effects and FG effects of the normal 
stress, transverse shear stress, deflection and frequency of 
a simply supported TFG sandwich Timoshenko micro-
beam based on the Hamilton’s principle and Mori-Tanaka 
scheme. And then, considering the Poisson effect, Trinh 
et al. (2016)[29] used a unified beam theory to explore the 
influences of the material length-scale parameter, FG 
parameter and slenderness ratio on the deflection, stresses, 
natural frequencies and critical buckling loads of a simply 
supported TFG micro-beam. 

In addition to these TFG micro-beams/plates 
aforementioned, axially functionally graded (AFG) 
micro-beams, whose material properties vary along the 
longitudinal direction, have also been investigated[7, 25, 30]. For 
instance, Ghayesh et al. (2017)[5] examined the size effects 
of the nonlinear bending and forced vibrations of an AFG 
Bernoulli-Euler tapered micro-beam, and the influences of 
FG parameter and taper ratio on the deflection and frequency 
based on the MCST, Hamilton’s principle, Galerkin method 
and Newton-Raphson technique. Li et al. (2017)[16] studied 
the size effects and FG effects of the bending, bucking and 
free vibration of an AFG Bernoulli-Euler micro-beam 
using the nonlocal strain gradient theory, the Hamilton’s 
principle and generalized differential quadrature method. 
Karamanlı and Vo (2018)[8] investigated the size-dependent 
flexural behavior of a bi-directional FG micro-beam based 
on the MCST and the principle of minimum potential 
energy for several boundary conditions. 

All of size effect, FG effect and Poisson effect play 
important roles in governing the mechanical behaviors 
of both TFG and AFG micro-beams. However few work 
have been published to investigate all of size effects, 
FG effects and Poisson effects of an AFG micro-beam 
comprehensively. The objective of this paper is to develop 
the mechanical model of an AFG micro-beam, which is 
related to the size effects, FG effects and Poisson effects. 
Firstly the displacement field of an AFG micro-beam is 
set according to the Bernoulli-Euler beam theory, and the 
components of strain, curvature, stress and couple stress 
are expressed by the deflection of the AFG micro-beam 
in Section 2. And then an AFG micro-beam model, which 
includes the size-dependent formulations of bending 
stiffness, deflection, stress and couple stress of the AFG 
micro-beam, is established by employing the principle 

of minimum potential energy in Section 3. Subsequently 
the size effects, the FG effects and the Poisson effects of 
the AFG micro-beam are respectively investigated in 
Section 4, Section 5 and Section 6 based on the developed 
model. Finally the important conclusions related to the 
size-dependent behaviors of an AFG micro-beam are 
summarized in section 7. 

2 MCST descriptions of basic variables
According to the MCST, a generic matter point in 
an elastomer has 6 degrees of freedom, including 3 
displacement components expressed by the vector ui and 3 
rotation components expressed by the vector θi, respectively. 
The differential relationship between displacement vector 
and rotation vector reads as

,
1
2i ijk k je uθ =

 (1)
where eijk is the permutation symbol. The geometric 

equations of an elastomer read as

, ,
1 ( )
2ij i j j iu uε = +

 (2a)

, ,
1 ( )
2ij i j j iχ θ θ= +

                            (2b)
where εij and χij denote the strain tensor and curvature 

tensor, respectively. For the case of small deformation, we 
write the constitutive equations of an isotropic elastomer as

2ij kk ij ijGσ λε δ ε= +
 (3a)

22ij ijm l Gχ=  (3b)
where σij is the stress tensor, mij is the deviatoric part 

of couple stress tensor, which is shortly called as the couple 
stress tensor in this paper, l is called as the material length-
scale parameter, which is a material constant characterizing 
the size effect, λ and G represent Lame’s coefficients 
expressed as  

( )( )1 1 2
Eµλ

µ µ
=

+ −  (4a)

( )2 1
EG

µ
=

+  (4b)
with E and μ being the elastic modulus and Poisson’s 

ratio, respectively. 
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Figure 1  Simply supported AFG micro-beam subjected to 
uniformly distributed load under a rectangular coordinate 

system. 
Figure 1 plots a simply supported AFG micro-

beam with rectangular constant section subjected to the 
uniformly distributed load under a rectangular coordinate 
system. The length, width and thickness are respectively 
presented by L, b and h. Its elastic modulus is assumed to 
vary along the axial direction according to 
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( ) ( )0 1 0 sin xE x E E E
L

π
= + −

 (5)
where E0 and E1 stand for the values of elastic modulus 

in the left end and the middle cross-section of the micro-
beam, respectively. According to the Bernoulli-Euler beam 
theory, we can express the displacement field of the AFG 
micro-beam as 

d ,  0,  ( )
d
wu z v w w x
x

= − = =
 (6)

where u, v and w are the displacement components in 
the x-, y- and z- directions, respectively. The displacement 
component in z-direction, w, is often called as the deflection 
of beam. Substituting the displacement field Eq. (6), into 
the geometric equation Eq. (2a), we formulate the strain 
components of the AFG micro-beam as

2

2

d ,  0
d

0

x y z

xy yx zx

wz
x

ε ε ε

ε ε ε

= − = =

= = =  (7)
Substituting the displacement field Eq. (6) into the 

rotation components Eq. (1), we formulate the rotation 
components of the AFG micro-beam as

d ,  0
dy x z
w
x

θ θ θ= − = =
 (8)

Plugging the rotation components Eq. (8) into the 
geometric equation Eq. (2b), we formulate the curvature 
components of the AFG micro-beam as

2

2

0 ,

1 d ,  0
2 d

xx yy zz

xy yx xz
w

x

χ χ χ

χ χ χ

= = =

= = − =
 (9)

Plugging the strain components Eq. (7) into the 
constitutive equation Eq. (3a), we formulate the stress 
components of the AFG micro-beam as

[ ]
2

2

2

2

d( ) 2 ( )  ,  
d

d( )  ,
d

0

xx

zz yy

xy yz zx

wx G x z
x

wx z
x

σ λ

σ σ λ

σ σ σ

= − +

= = −

= = =  (10)
where the coefficients λ(x) and G(x) can be determined 

by Eqs. (5) and (4). Plugging the curvature components Eq. 
(9) into the constitutive equation Eq. (3b), we formulate the 
couple stress components of the AFG micro-beam as

2
2

2

0 ,

d( )  
d

xx yy zz

xy yx

m m m

wm m G x l
x

= = =

= = −
 (11)

3 AFG micro-beam model

3.1 Bending stiffness formulation
According to the MCST, we can calculate the strain energy 
of an elastomer by 

( )1 d
2 ij ij ij ijV

U m Vσ ε χ= +∫  (12)
where V is the volume the elastomer occupying. 

Inserting the strain Eq. (7), curvature Eq. (9), stress Eq. 
(10) and couple stress Eq. (11) into the strain energy Eq. 

(12), we obtain 
2

2
2

1 d( )( ) d
2 dL

wU K x x
x

= ∫  (13)
where

0 1 0( ) ( )sin xK x E E E I
L

πα  = + −    (14)
is the bending stiffness of the AFG micro-beam, where

2d
A

I z A= ∫  (15)
is the inertia moment of the cross-section of the 

micro-beam, and 
2(1 )

(1 2 )(1 ) 2(1 )
l A

I
µα

µ µ µ
−

= +
− + +  (16)

is called as the size effect parameter of the AFG micro-
beam because it is related to the material length-scale 
parameter l. For an AFG micro-beam with rectangular 
cross-section, we express the size effect parameter as 

21 6
(1 )(1 2 ) (1 )

l
h

µα
µ µ µ

−  = +  + − +   (17)
In order to express the size effect of the bending 

stiffness of the AFG micro-beam, we define a dimensionless 
bending stiffness as

( )
0

'( )
K x

K x
E I

=
 (18)

Inserting Eq. (14) into Eq. (18), we formulate the 
dimensionless bending stiffness of the AFG micro-beam as

( )'( ) 1 1 sin xK x e
L

πα  = + −    (19)
where 

1

0

Ee
E

=
 (20)

is called as the FG parameter of the AFG micro-beam. 
3.2 Deflection formulation 
According to the displacement boundary conditions of the 
AFG micro-beam in Figure 1, we assume the deflection 
formulation as 

1 2
3( ) sin( ) sin( )x xw x C C

L L
π π

= +
 (21)

where C1 and C2 are the undetermined coefficients. 
The total potential energy of the AFG micro-beam reads as

U VΠ = +  (22)
where U is the strain energy formulated by Eq. (13), 

and 

0
( )

L
V q w x dx= − ⋅∫  (23)

is the loaded potential energy. 
Plugging the strain energy Eq. (13), loaded potential 

energy Eq. (23) and deflection formulation Eq. (21) into 
the total potential energy Eq. (22), we express the total 
potential energy of the AFG micro-beam in Figure 1 as 

( ) ( ) ( )3
2 20

1 2 1 1 2 23

1 2

2 1 12 1 1458 181( ,C )
4 3 5 4 35

2 2                                                                                                   
3

e e eE IC C C C C
L

L LqC qC

α π π π

π π

 − − −    Π = + − + +    
     

− −

 (24)
According to the principle of minimum total potential 
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energy, the actual displacement field minimizes the total 
potential energy of an elastomer. Hence, the first order 
variation of the total potential energy expressed by Eq. (24) 
should be zero, i.e. 

1 2 1 2
1 2

( ,  ) 0C C C C
C C

δ δ δ∂Π ∂Π
Π = + =

∂ ∂  (25)
Eq. (25) should be identical for arbitrary δC1 and δC2, 

which asks for 

1

0
C

∂Π
=

∂  (26a)

2

0
C

∂Π
=

∂  (26b)
Substituting the expression of total potential energy 

Eq. (24) into Eqs. (26a) and (26b), we obtain an algebraic 
equation set. Solving the obtained algebraic equation set, 
we have 

4
2 3

1 4 2
0 1 3 2

32
3

a aqLC
E I a a aπ α

+
= ⋅

−  (27a)
4

1 2
2 4 2

0 1 3 2

32
3

a aqLC
E I a a aπ α

+
= ⋅

−  (27b)
where 

 (28a)
( )

2

12 1
5
e

a
−

=
 (28b)

( )
3

2835 5832 1
70

e
a

π + −
=

 (28c)
Substituting Eq. (27) into the deflection formulation 

Eq. (21), we obtain 
4

2 3 1 2
4 2 2

0 1 3 2 1 3 2

3 32 3( ) sin sin
3

a a a aqL x xw x
E I a a a L a a a L

π π
π α

 + +
= ⋅ ⋅ + ⋅ − −   (29)
In order to express the size effect of the deflection of 

an AFG micro-beam, we define a dimensionless deflection 
as 

4

4
0

2'( ) ( ) / ( )
3

qLw x w x
E Iπ

=
 (30)

Substituting Eq. (29) into Eq. (30),we formulate the 
dimensionless deflection of the AFG micro-beam in Figure 
1 as 

2 3 1 2
2 2

1 3 2 1 3 2

3 31 3'( ) sin( ) sin( )a a a ax xw x
a a a L a a a L

π π
α

 + +
= ⋅ ⋅ + ⋅ − −   (31)

3.3 Normal stress formulation
Plugging the deflection formulation Eq. (29) into the stress 
expression Eq. (10), we formulate the normal stress in a 
generic matter point of the AFG micro-beam cross-section 
as

2
2 3 1 2

2 2 2
1 3 2 1 3 2

3 9 272 '( ) 3sin sin
3xx

a a a aqL z E x x x
I a a a L a a a L

π πσ
π α

 + +
= ⋅ ⋅ ⋅ + ⋅ − −   (32)

where 
1'( ) 1 ( 1)sin

(1 )(1 2 )
xE x e

L
µ π

µ µ
−  = + − + −    (33)

In order to analyze the size effect of the normal stress 
of an AFG micro-beam, we define a dimensionless normal 

stress as
2

max
2

2' / ( )
3xx xx
qL z

I
σ σ

π
=

 (34)
Substituting Eq. (32) into Eq. (34), we formulate the 

dimensionless normal stress of the AFG micro-beam in 
Figure 1 as

2 3 1 2
2 2

1 3 2 1 3 2

3 9 27'( ) 3' sin sinxx
mzx

a a a aE x x x z
a a a L a a a L z

π πσ
α

 + +
= ⋅ ⋅ + ⋅ ⋅ − −   (35)

3.4 Couple stress formulation
Plugging the deflection formulation Eq. (29) into the couple 
stress expression Eq. (11), we formulate the couple stress in 
a generic point of the AFG micro-beam cross-section as 

2 2
2 2 3 1 2

2 2 2
1 3 2 1 3 2

3 9 272 '( ) 3( ) sin sin  
3xy

a a a aqL h G x l x xm
I h a a a L a a a L

π π
π α

 + +
= ⋅ ⋅ ⋅ ⋅ + ⋅ − −   (36)

where 
1'( ) 1 ( 1)sin

2(1 )
xG x e

L
π

µ
 = + − +    (37)

In order to analyze the size effect of the couple stress 
of the AFG micro-beam, we define a dimensionless couple 
stress as

2 2

2

2' / ( ) 
3xy xy
qL hm m

Iπ
=

 (38)
Substituting Eq. (36) into Eq. (38), we formulate the 

dimensionless couple stress of the AFG micro-beam as 
2 2 3 1 2

2 2
1 3 2 1 3 2

3 9 27'( ) 3' ( ) sin sin  xy
a a a aG x l x xm

h a a a L a a a L
π π

α
 + +

= ⋅ ⋅ ⋅ + ⋅ − −  (39)

4. Size effects of AFG micro-beam 

4.1 Size effect of bending stiffness
The size effect of bending stiffness of the AFG micro-beam in 
Figure 1 are numerically investigated in this section. Figure 
2 plots the bending stiffness curves related to size effect, 
where the dimensionless bending stiffness is calculated by 
Eq. (19) and maximum dimensionless bending stiffness is 
specified by Eq. (19) with x = L/2, respectively. 

Figure 2(a) plots the dimensionless bending stiffness 
curves versus dimensionless coordinate with respect to 
different values of dimensionless height. It is clear that each 
dimensionless bending stiffness curve of the AFG micro-
beam forms a sinusoidal hump whose peak declines with 
the increased value of dimensionless height. This indicates 
the size effect of bending stiffness that the smaller the 
value of dimensionless height is, the larger the value of 
dimensionless bending stiffness of the AFG micro-beam is. 

Figure 2(b) shows the maximum dimensionless 
bending stiffness curves versus dimensionless height with 
respect to different values of FG parameter. It is found that 
the value of maximum dimensionless bending stiffness 
rapidly decreases with the increased value of dimensionless 
height when the dimensionless height is less than 4, 
however it gradually becomes a stable constant when 
the value of dimensionless height is greater than 10. This 
explains the size effect of bending stiffness that it is obvious 
when the value of dimensionless height is less than 4, while 
it can be neglected when the value of dimensionless height 
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is greater than 10. It is seen that the curve of maximum 
dimensionless bending stiffness moves upward and extends 
vertically when the FG parameter becomes larger. This 
explains the influence of FG parameter on the size effect of 
bending stiffness that the larger the value of FG parameter 
is, the more obvious the size effect of bending stiffness is. 
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Figure 2  Bending stiffness curves related to the size effect: 
(a) dimensionless bending stiffness vs. dimensionless co-
ordinate with different value of dimensionless height, and 
(b) maximum dimensionless bending stiffness vs. dimen-

sionless height with different value of FG parameter. 

4.2 Size effect of deflection 
The size effect of deflection of the AFG micro-beam in 
Figure 1 is numerically investigated in this section. Figure 
3 plots the deflection curves related to the size effect, where 
the dimensionless deflection is calculated by Eq. (31) and 
maximum dimensionless deflection is specified by Eq. (31) 
with x = L/2, respectively. 

Figure 3 (a) plots the dimensionless deflection 
curves versus dimensionless coordinate with respect to 
different values of dimensionless height. It is clear that each 
dimensionless deflection curve of the AFG micro-beam 
forms a different sinusoidal hump whose peak rises with 
the increased dimensionless height. This indicates the size 
effect of deflection that the bending flexibility of an AFG 
micro-beam rises with the increased value of dimensionless 
height. 

Figure 3 (b) shows the maximum dimensionless 
deflection curves versus dimensionless height with respect 
to different values of FG parameter. It is found that the value 
of maximum dimensionless deflection obviously increases 
with the increased value of dimensionless height when 

the value of dimensionless height is less than 4, however 
it gradually becomes a stable constant when the value of 
dimensionless height is greater than 10. This illustrates 
the size effect of deflection that it is obvious when the 
value of dimensionless height is less than 4, however it 
can be neglected when the value of dimensionless height 
is greater than 10. It is clear that the curve of maximum 
dimensionless deflection moves downward and shrinks 
vertically when the FG parameter becomes larger. This 
explains the influence of FG parameter on the size effect 
of deflection that the smaller the value of FG parameter is, 
the more obvious the size effect of deflection of an AFG 
micro-beam is. 
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Figure 3  Deflection curves related to the size effect: (a) 
dimensionless deflection vs. dimensionless coordinate 

with different value of dimensionless height, and (b) max-
imum dimensionless deflection vs. dimensionless height 

with different value of FG parameter. 

4.3 Size effect of normal stress
The size effect of normal stress of the AFG micro-beam in 
Figure 1 is numerically investigated in this section. Figure 
4 plots the normal stress curves related to the size effect, 
where the dimensionless normal stress is calculated by Eq. 
(35) with z = h/2 and maximum dimensionless normal 
stress is specified by Eq. (35) with z = h/2 and x = L/2, 
respectively. 

Figure 4(a) shows the dimensionless normal stress 
curves versus dimensionless coordinate with respect to 
different values of dimensionless height. It is clear that 
each dimensionless normal stress curve is with a platform 
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which is due to the FG effect of an AFG micro-beam. The 
altitude of platform of dimensionless normal stress rises 
with the increased value of dimensionless height, which 
explains the size effect of normal stress that the larger the 
value of dimensionless height is, the larger the value of 
dimensionless normal stress is. 

Figure 4(b) plots the maximum dimensionless normal 
stress curves versus dimensionless height with respect to 
different values of FG parameter. It is found that the value 
of maximum dimensionless normal stress nonlinearly 
increases with the increased value of dimensionless height 
when the value of dimensionless height is below 10, 
however it gradually becomes a stable constant when the 
value of dimensionless height is above 20. This indicates 
that the size effect of normal stress of an AFG micro-
beam is obvious when the value of dimensionless height 
is below 10, however it can be neglected when the value 
of dimensionless height is above 20. It is seen that the 
influence of FG parameter on the size effect of normal 
stress is not very obvious. 
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Figure 4  Normal stress curves related to the size effect: (a) 
dimensionless normal stress vs. dimensionless coordinate 
with different value of dimensionless height, and (b) the 

maximum dimensionless normal stress vs. dimensionless 
height with different value of FG parameter. 

4.4 Size effect of couple stress 
The size effect of couple stress of the AFG micro-beam in 
Figure 1 is numerically investigated in this section. Figure 
5 plots the couple stress curves related to the size effect, 
where the dimensionless couple stress is calculated by Eq. 
(39) and maximum dimensionless couple stress is specified 
by Eq. (39) with x = L/2, respectively. 
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Figure 5  Couple stress curves related to the size effect: (a) 
dimensionless couple stress vs. dimensionless coordinate 

with different value of dimensionless height, and (b) maxi-
mum dimensionless couple stress vs. dimensionless height 

with different value of FG parameter. 
Figure 5(a) shows the dimensionless couple stress 

curves versus dimensionless coordinate with different 
values of dimensionless height. It is also clear that each 
dimensionless couple stress curve is with a platform due 
to the FG effect of an AFG micro-beam. But the altitude of 
platform of dimensionless normal stress declines with the 
increased value of dimensionless height, which indicates 
the size effect of couple stress of an AFG micro-beam that 
the smaller the value of dimensionless height is, the larger 
the value of dimensionless couple stress is. 

Figure 5(b) shows the maximum dimensionless 
couple stress curves versus dimensionless height with 
different values of FG parameter. It is seen that the value 
of maximum dimensionless couple stress rapidly decreases 
with the increased value of dimensionless height when 
the value of dimensionless height is below 5, however 
it gradually becomes a stable constant when the value of 
dimensionless height is above 10. This indicates the size 
effect of couple stress of an AFG micro-beam that it is 
obvious when the value of dimensionless height is below 5, 
while it can be neglected when the value of dimensionless 
height is above 10. It is also seen that the influences of FG 
parameter on the size effect of couple stress of an AFG 
micro-beam is not obvious. 

5 FG effects of AFG micro-beam

5.1 FG effect of bending stiffness
The FG effect of bending stiffness of the AFG micro-beam in 
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Figure 1 is numerically investigated in this section. Figure 6 
shows the bending stiffness curves related to the FG effect, 
where the dimensionless bending stiffness is calculated by 
Eq. (19) and maximum dimensionless bending stiffness is 
specified by Eq. (19) with x = L/2, respectively. 
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Figure 6  Bending stiffness curves related to the FG effect: 
(a) dimensionless bending stiffness vs. dimensionless 

coordinate with different value of FG parameter, and (b) 
dimensionless bending stiffness vs. FG parameter with 

different value of dimensionless height. 
Figure 6(a) plots the dimensionless bending stiffness 

curves versus dimensionless coordinate with respect to 
different values of FG parameter. It is clear that the peak 
of dimensionless bending stiffness curve rises with the 
increased value of FG parameter, which is due to the 
expression of elastic modulus Eq. (5), and the definition 
of FG parameter Eq. (20). This illustrates the FG effect of 
bending stiffness of an AFG micro-beam that the bending 
stiffness increases with the increased value of FG parameter. 

Figure 6(b) plots the maximum dimensionless 
bending stiffness curves versus FG parameter with respect 
to different values of dimensionless height. It is clear that 
the value of maximum dimensionless bending stiffness 
increases with the increased value of FG parameter, 
which also indicates FG effect of bending stiffness of an 
AFG micro-beam. It is found that the curve of maximum 
dimensionless bending stiffness extends vertically with the 
decreased value of dimensionless height, which indicates 
the influence of dimensionless height on the FG effect of 
bending stiffness that the smaller the value of dimensionless 
height is, the more obvious the FG effect of an AFG micro-
beam is. 

5.2 FG effect of deflection
The FG effect of deflection of the AFG micro-beam in 
Figure 1 is numerically investigated in this section. Figure 7 
shows the deflection curves related to the FG effect, where 
the dimensionless deflection is calculated by Eq. (31) and 
maximum dimensionless deflection is specified by Eq. (31) 
with x = L/2, respectively. 
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Figure 7  Deflection curves related to the FG effect of 
deflection: (a) dimensionless deflection vs. dimensionless 
coordinate with different value of FG parameter, and (b) 

maximum dimensionless deflection vs. FG parameter with 
different value of dimensionless height. 

Figure 7(a) shows the dimensionless deflection 
curves versus dimensionless coordinate with respect to 
different values of FG parameter. It is clear that the peak 
of sinusoidal curve of dimensionless deflection decreases 
with the increased value of FG parameter. This illustrates 
the FG effect of deflection that the bending flexibility of an 
AFG micro-beam decreases with the increased value of FG 
parameter. 

Figure 7(b) plots the maximum dimensionless 
deflection curves versus FG parameter with respect to 
different values of dimensionless height. It is found that 
the value of maximum dimensionless deflection rapidly 
decreases with the increased value of FG parameter when 
the FG parameter is below 5, however it gradually becomes 
a stable constant when the FG parameter is above 10. This 
means that the FG effect of deflection of an AFG micro-
beam is obvious when the FG parameter is below 5, while 
it can be neglected when the FG parameter is above 10. 
It is clear that the maximum dimensionless deflection 
curve moves upward and extends vertically when the 
dimensionless height becomes larger. This explains the 
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influence of dimensionless height on the FG effect of 
deflection of an AFG micro-beam that the larger the value of 
dimensionless height is, the more obvious the FG effect is. 
5.3 FG effect of normal stress
The FG effect of normal stress of the AFG micro-beam in 
Figure 1 is numerically investigated in this section. Figure 
8 plots the normal stress curves related to the FG effect, 
where the dimensionless normal stress is calculated by Eq. 
(35) with z = h/2 and maximum dimensionless normal 
stress is specified by Eq. (35) with z = h/2 and x = L/2, 
respectively. 
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Figure 8  Normal stress curves related to the FG effect: (a) 
dimensionless normal stress vs. dimensionless coordinate 
with different value of FG parameter, and (b) maximum 

dimensionless normal stress vs. FG parameter with differ-
ent value of dimensionless height.

Figure 8(a) shows the dimensionless normal stress 
curves versus dimensionless coordinate with respect to 
different values of FG parameter. It is found that the curve 
peak of dimensionless normal stress decreases with the 
increased value of FG parameter. However the curves of 
dimensionless normal stress for different FG parameters 
are very close and similar, which indicates that the FG effect 
of normal stress of an AFG micro-beam is not obvious. 

Figure 8(b) plots the maximum dimensionless normal 
stress curves versus FG parameter with respect to different 
values of dimensionless height. It is clear that the value 
of maximum dimensionless normal stress has only slight 
decrease with the increased value of FG parameter, which 
also means that the FG effect of normal stress of an AFG 
micro-beam is not obvious. It is seen that the maximum 
dimensionless normal stress curve moves upward and 
becomes more declining with the increased value of 

dimensionless height. This explains that the larger the value 
of dimensionless height is, the more obvious the FG effect 
of normal stress of an AFG micro-beam is. 
5.4 FG effect of couple stress
The FG effect of couple stress of the AFG micro-beam in 
Figure 1 is numerically investigated in this section. Figure 
9 plots the couple stress curves related to the FG effect, 
where the dimensionless couple stress is calculated by Eq. 
(39) and maximum dimensionless couple stress is specified 
by Eq. (39) with x = L/2, respectively. 
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Figure 9  Couple stress curves related to the FG effect: (a) 
dimensionless couple stress vs. dimensionless coordinate 
with different value of FG parameter, and (b) maximum 

dimensionless couple stress vs. FG parameter with differ-
ent value of dimensionless height. 

Figure 9(a) plots the dimensionless couple stress 
curves versus dimensionless coordinate with respect to 
the different values of FG parameter. It is found that the 
curve peak of dimensionless couple stress decreases with 
the increased value of FG parameter. However the curves 
of dimensionless couple stress for the different values of FG 
parameter are very close and similar, which indicates that 
the FG effect of couple stress of an AFG micro-beam is also 
not obvious. 

Figure 9(b) shows the maximum dimensionless 
couple stress curves versus FG parameter with respect 
to different values of dimensionless height. It is found 
that the value of maximum dimensionless couple stress 
has only slight decrease with the increased value of FG 
parameter, which also means that the FG effect of couple 
stress of an AFG micro-beam is not obvious. It is clear that 
the maximum dimensionless couple stress curve moves 
upward and becomes more declining with the decreased 
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dimensionless height. This explains that the smaller the 
value of dimensionless height is, the more obvious the FG 
effect of couple stress of an AFG micro-beam is. 

6 Poisson effects of AFG micro-beam

6.1 Poisson effect of bending stiffness
The Poisson effect of bending stiffness of the AFG micro-
beam in Figure 1 is numerically investigated in this section. 
Figure 10 shows the bending stiffness curves related to the 
Poisson effect, where the dimensionless bending stiffness 
is calculated by Eq. (19) and maximum dimensionless 
bending stiffness is specified by Eq. (19) with x = h/2, 
respectively. 
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Figure 10  Bending stiffness curves related to the Poisson 
effect: (a) dimensionless bending stiffness vs. dimension-
less coordinate with different value of Poisson’s ratio, and 
(b) maximum dimensionless bending stiffness vs. Pois-

son’s ratio with different value of FG parameter. 
Figure 10(a) plots the dimensionless bending stiffness 

curves versus dimensionless coordinate with respect 
to different values of Poisson’s ratio. It is clear that each 
dimensionless bending stiffness curve is with a sinusoidal 
shape. The Poisson’s ratio has an obvious influence on the 
curve of dimensionless bending stiffness of an AFG micro-
beam, which is the Poisson effect of bending stiffness. 

Figure 10(b) shows the maximum dimensionless 
bending stiffness curves versus Poisson’s ratio with respect 
to different values of FG parameter. It is seen that the value 
of maximum dimensionless bending stiffness slightly 
decreases with the increased value of Poisson’s ratio when 
the value of Poisson’s ration is below 0.4, however it rapidly 
increases with the increased value of Poisson’s ratio when 

the value of Poisson’s ration is above 0.4. This indicates 
that the Poisson effect of bending stiffness is obvious when 
the value of Poisson’s ration is above 0.4, while it can be 
neglected when the value of Poisson’s ration is below 0.4. It 
is seen that the maximum dimensionless bending stiffness 
curve moves upward and extends vertically when the 
value of FG parameter becomes larger. This explains the 
influence of FG parameter on the Poisson effect of bending 
stiffness that the larger the value of FG parameter is, the 
more obvious the Poisson effect of bending stiffness of an 
AFG micro-beam is. 
6.2 Poisson effect of deflection
The Poisson effect of deflection of the AFG micro-beam in 
Figure 1 is numerically investigated in this section. Figure 
11 shows the deflection curves related to the Poisson effect, 
where the dimensionless deflection is calculated by Eq. (31) 
and maximum dimensionless deflection is specified by Eq. 
(31) with x = L/2, respectively. 
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Figure 11 Deflection curves related to the Poisson effect: 
(a) dimensionless deflection vs. dimensionless coordinate 
with different value of Poisson’s ratio, and (b) maximum 
dimensionless deflection vs. Poisson’s ratio with different 

value of FG parameter. 
Figure 11(a) plots the dimensionless deflection curves 

versus dimensionless coordinate with respect to different 
values of Poisson’s ratio. It is found that each dimensionless 
deflection curve is with a sinusoidal shape and the Poisson’s 
ratio has an obvious influence on the curve of dimensionless 
deflection, which is the Poisson effect of deflection of an 
AFG micro-beam. 

Figure 11(b) shows the maximum dimensionless 
deflection curves versus Poisson’s ratio with respect to 
different values of FG parameter. It is clear that the value 
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of maximum dimensionless deflection slightly increases 
with the increased value of Poisson’s ratio when the value 
of Poisson’s ratio is below 0.4, however it rapidly decreases 
with the increased value of Poisson’s ratio when the value of 
Poisson’s ratio is above 0.4. This indicates that the Poisson 
effect of deflection of an AFG micro-beam is obvious when 
the value of Poisson’s ratio is above 0.4, while it can be 
neglected when the value of Poisson’s ratio is below 0.4. It 
is seen that the maximum dimensionless deflection curve 
moves downward and shrinks vertically with the increased 
value of FG parameter. This explains the influence of FG 
parameter on the Poisson effect of deflection that the 
smaller the value of FG parameter is, the more obvious the 
Poisson effect of deflection of an AFG micro-beam is. 
6.3 Poisson effect of normal stress 
The Poisson effect of normal stress of the AFG micro-beam 
in Figure 1 is numerically investigated in this section. Figure 
12 shows the normal stress curves related to the Poisson 
effect, where the dimensionless normal stress is calculated 
by Eq. (35) with z = h/2 and the maximum dimensionless 
normal stress is specified by Eq. (35) with z = h/2 and x = 
L/2, respectively. 
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Figure 12  Normal stress curves related to the Poisson 
effect: (a) dimensionless normal stress vs. dimensionless 
coordinate with different value of Poisson’s ratio, and (b) 
maximum dimensionless normal stress vs. Poisson’s ratio 

with different value of FG parameter. 
Figure 12(a) shows the dimensionless normal stress 

curves versus dimensionless coordinate with respect to 
different values of Poisson’s ratio. It is clear that a platform 
appears in the dimensionless normal stress curve due to the 
FG effect of an AFG micro-beam. The altitude of platform 
of dimensionless normal stress increases with the increased 

value of Poisson's ratio. This indicates the influence of 
Poisson's ratio on the dimensionless normal stress, which is 
the Poisson effect of normal stress of an AFG micro-beam. 

Figure 12(b) shows the maximum dimensionless 
normal stress curves versus Poisson’s ratio with respect to 
different values of FG parameter. It is seen that the value 
of maximum dimensionless normal stress nonlinearly 
increases with the increased value of Poisson's ratio, which 
means that the Poisson effect of normal stress of an AFG 
micro-beam is obvious. It is found that the maximum 
dimensionless normal stress curves with different values 
of FG parameter are very close and similar, which means 
that the influence of FG parameter on the Poisson effect of 
normal stress of an AFG micro-beam is not obvious and 
then can be neglected. 
6.4 Poisson effect of couple stress
The Poisson effect of couple stress of the AFG micro-beam 
in Figure 1 is numerically investigated in this section. 
Figure 13 shows the couple stress curves related to the 
Poisson effect, where the dimensionless couple stress is 
calculated by Eq. (39) and maximum dimensionless couple 
stress is specified by Eq. (39) with x = L/2, respectively. 
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Figure 13  Couple stress curves related to the Poisson 
effect: (a) dimensionless couple stress vs. dimensionless 
coordinate with different value of Poisson’s ratio, and (b) 
maximum dimensionless couple stress vs. Poisson’s ratio 

with different value of FG parameter. 
Figure 13(a) shows the dimensionless couple stress 

curves versus dimensionless coordinate with respect to 
different values of Poisson’s ratio. It is clear that a platform 
also appears in the dimensionless couple stress curve due to 
the FG effect of couple stress of an AFG micro-beam. The 
altitude of platform decreases with the increased value of 
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Poisson's ratio. This explains the influence of Poisson's ratio 
on the dimensionless couple stress, which is the Poisson 
effect of couple stress of an AFG micro-beam. 

Figure 13(b) plots the maximum dimensionless couple 
stress curves versus Poisson’s ratio with respect to different 
values of FG parameter. It is seen that the value of maximum 
dimensionless couple stress nonlinearly decreases with the 
increased value of Poisson's ratio, which indicates that the 
Poisson effect of couple stress of an AFG micro-beam is 
obvious. It is found that maximum dimensionless couple 
stress curves for different values of FG parameter are very 
close and similar, which indicates that the influence of FG 
parameter on the Poisson effect of couple stress of an AFG 
micro-beam is not obvious and then can be neglected. 

7 Conclusions
The components of strain, curvature, stress and couple 
stress of an AFG micro-beam are described according to 
the MCST and Bernoulli-Euler theory. The size-dependent 
model related to FG effect and Poisson effect is developed to 
describe and predict the mechanical behaviors of the AFG 
micro-beam by using the principle of minimum potential 
energy. The mechanical behaviors of the AFG micro-beam, 
which are related to size the effects, FG effects and Poisson 
effects, are numerically investigated via the dimensionless 
definitions such as dimensionless bending stiffness, 
dimensionless deflection, dimensionless normal stress 
and dimensionless couple stress. Through the numerical 
simulation, some important conclusions are summarized 
as follows. 

1) The size effects of mechanical behaviors, which 
includes the size effects of bending stiffness, deflection, 
normal stress and couple stress of the AFG micro-beam, 
are obvious when the value of dimensionless height is small 
enough. However the size effects can be neglected when 
the value of dimensionless height of micro-beam is large 
enough. 

2) The FG effects, i.e. the influences of FG parameter, 
are important factors related to the bending stiffness and 
deflection of AFG micro-beam. However the FG effects 
of normal stress and couple stress are not very obvious. 
The dimensionless height has visible influences on the FG 
effects of bending stiffness, deflection, normal stress and 
couple stress of the AFG micro-beam. 

3) The Poisson effects, i.e. the influences of Poisson’s 
ratio, are not negligent for the bending stiffness, deflection, 
normal stress and couple stress of the AFG micro-beam. 
The dimensionless height has obvious influences only on 
the Poisson effects of bending stiffness and deflection, 
while it has little influences on the Poisson effects of normal 
stress and couple stress. 
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