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Abstract: 
This paper focuses on the size-dependently mechanical behaviors of a micro-beam under forced vibration. Governing equations 
of a micro-beam under forced vibration are established by using the modified couple stress theory, Bernoulli-Euler beam theory 
and D’Alembert’s principle together. A simply supported micro-beam under forced vibration is solved according to the established 
governing equations and the method of separation of variables. The dimensionless deflection, amplitude mode and period mode 
are defined to investigate the size-dependently mechanical behaviors of a micro-beam under forced vibration. Results show that the 
performance of a micro-beams under forced vibration is distinctly size-dependent when the ratio of micro-beam height to material 
length-scale parameter is small enough. Both frequency ratio and loading location are the important factors that determine the size-
dependent performance of a micro-beams under forced vibration.
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1 Introduction
Microbeams have been widely employed in micro-electro-
mechanical systems (MEMS) [1-3]. There have been many 
applications of microbeams, such as microscale sensors[4-6], 
microscale actuators[7-8], and microswitch[9]. 

The experimental results[10-11] have revealed the size-
dependent of material behavior in micron scale. However, 
the classical continuum mechanics theories couldn’t 
describe the phenomenon. Therefore strain gradient and 
couple stress theory have been applied to study size effect 
of micron devices[12-16]. In these theories, internal material 
length scale parameters were introduced. Ansari et al.[17] 
studied the bending, buckling and free vibration responses 
of functionally graded Timoshenko beams based on the 
theory of strain gradient elasticity. They established a 
size-dependent beam model with five additional material 
length-scale parameters using Hamilton's principle. Liang 
et al.[18] built a new Bernoulli-Euler beam model employing 
a simplified strain gradient elasticity theory and analytically 
solved static bending of cantilever beams, buckling and 
free vibration of simply supported beams. Alashti et 
al.[19] derived the governing equations of Bernoulli-Euler 
beams by using the variational formula and Hamilton’s 
principle, based on the couple stress model proposed by 

Hadjesfandiari et al.[16], and discussed the problems of 
static bending and free vibration of Bernoulli-Euler beams 
with different boundary conditions. 

Yang et al.[20] presented a modified couple stress 
theory (MCST) based on couple stress theory. This theory 
revealed that couple stress tensor was symmetric and 
conjugated with symmetric curvature tensor to total strain 
energy of the system. In addition, only one material length-
scale parameter was used in the MCST, thus this theory was 
utilized more widely. Park et al.[21] provided a variational 
formulation for the MCST using the principle of minimum 
total potential energy. Park et al.[22] studied bending of 
Bernoulli-Euler microbeam on the basis of the MCST. 
The governing equation and boundary condition were 
developed using the principle of minimum total potential 
energy. Ma et al.[23] developed a micro Timoshenko model 
using Hamilton’s principle and variational formulation 
based on the MCST. Kong et al.[24] obtained the dynamic 
equilibrium governing equation, initial condition and 
boundary condition of Bernoulli-Euler micro-beam 
combining the basic equation of MCST with Hamilton 
principle. The boundary value problem of simply supported 
beam and cantilever beam were solved, and size effect on 
natural frequencies of beams was studied. Mohammad-
Abadi et al.[25] analyzed free vibration of composite 
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laminated beams using the modified couple stress theory. 
The governing equation and boundary condition were 
obtained by applying Hamilton’s principle. The differences 
between Bernoulli -Euler, Timoshenko and Reddy beam 
models were studied. Dehrouyeh-Semnani et al.[26] 
obtained Bernoulli-Euler beam model and Timoshenko 
beam model based on modified couple stress. The effects 
of size-dependent shear deformation on static bending, 
buckling and free vibration characteristics of micro-beams 
were studied. 

In summary, many works have been published to 
investigate the effects of size-dependent on static bending, 
bulking and free vibration of micro-beams. However the 
works about the size-dependent behaviors of a micro-beam 
under forced vibration are few. The objective of this paper 
is to investigate the size-dependent behaviors of a micro-
beam under forced vibration. In Section 2, the modified 
couple stress theory is briefly introduced for considering 
the size effect of a micro-beam. In Section 3, the governing 
equations for a micro-beam under forced vibration are 
established by using the MCST and D’Alembert’s principle 
together. In Section 4, a simply supported micro-beam 
under forced vibration is solved based on the method of 
separation of variables. In Section 5, the size-dependent 
mechanical behaviors of a micro-beam under forced 
vibration are numerically investigated. Finally, several 
important conclusions related to the size-dependent 
mechanical behaviors of a micro-beam under forced 
vibration are summarized in Section 6. 

2 Modified couple stress theory
According to the MCST, the constitutive equation of an 
elastomer reads as 

2ij kk ij ijGσ λε δ ε= +  (1)
22ij ijm l Gχ=  (2)

where l is the length-scale parameter; σij and εij are 
stress tensor and strain tensor, respectively; mij and χij 
are deviatoric part of couple stress tensor and symmetric 
curvature tensor, respectively; λ and G are Lame’s constants 
expressed as 

(1 )(1 2 )
Eµλ

µ µ
=

+ −  (3)
and 

2(1 )
EG

µ
=

+  (4)
respectively; E and μ are elastic modulus and Poisson’s 

ratio, respectively; l is the length-scale parameter, a material 
constant related to the size effect. 

The geometric equation of an elastomer reads as
( ), ,

1
2ij i j j iu uε = +

 (5) 
( ), ,

1
2ij i j j iχ θ θ= +

 (6) 
where ui and θi are the displacement tensor and 

rotation tensor, respectively. The rotation tensor can be 
expressed as 

,
1
2i ijk k je uθ =

 (7) 
where eijk is the third order alternating tensor. 

3 Governing equations micro-beam under 
forced vibration

3.1 Formulations on basic variables

Figure 1  Bernoulli-Euler micro-beam subjected to trans-
verse force under the Cartesian coordinate system x, y, z, 
where q(x, t) is the line density of transverse force and t 

stands for time.
According to the theory of Bernoulli-Euler beam, the 

displacement field of a beam can be expressed as 
( ) ( ),

 ,  0 ,  ,
w x t

u z v w w x t
x

∂
= − = =

∂  (8) 
where u, v and w are the displacement components in 

directions x, y and z respectively. Substituting (8) into the 
geometric equation (5), one formulates the nonzero strain 
component of a Bernoulli-Euler beam as 

2

2xx
wz

x
ε ∂

= −
∂  (9) 

Substituting (8) into the rotation tensor expression 
(7), one has the rotation components of a Bernoulli-Euler 
beam 

0,   ,  0x y z
w
x

θ θ θ∂
= = − =

∂  (10) 
Substituting (10) into the geometric equation (6), 

one formulates the nonzero curvature components of a 
Bernoulli-Euler beam as 

2

2

1
2xy yx

w
x

χ χ ∂
= = −

∂  (11) 
Using the nonzero strain component (9) and the 

constitutive equation (1), one expresses the nonzero stress 
components of a Bernoulli-Euler beam as 

( )
2 2

2 22  ,  xx yy zz
w wG z z

x x
σ λ σ σ λ∂ ∂

= − + = = −
∂ ∂  (12)

where λ and G are Lame’s constants defined by (3) 
and (4), respectively. Similarly using the nonzero curvature 
components (11) and the constitutive equation (2), one 
expresses the nonzero couple stress components of a 
Bernoulli-Euler beam as

2
2

2  xy yx
wm m Gl

x
∂

= = −
∂  (13)

3.2 Motion differential equation
In order to establish the motion differential equation of the 
beam in Fig 1, we isolate an infinitesimal segment with a 
length dx and plots its free body diagram in Figure 2. In the 
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free body diagram, Q and M are shear force and bending 
moment, respectively; q and fi is the transverse force and 
inertial force per unit length, respectively. 

Figure 2  Free-body diagram of an infinitesimal segment 
with the length dx isolated from the micro-beam under 

forced vibration shown in Figure 1.
According to the D’Alembert’s principle, the 

equilibrium of the isolated segment in Figure 2 along 
z-direction requires 

( , )( , ) ( , )d [ ( , ) d ] ( , )d 0i
Q x tQ x t q x t x Q x t x f x t x

x
∂

− − + − =
∂  (14)

The inertial force per unit length is calculated by
2

2

( , )( , )i
w x tf x t A

t
ρ ∂

= −
∂  (15)

where ρ and A are the mass density and cross-section 
area, respectively. Substituting (15) to (14), one has the 
equilibrium equation

2

2

( , ) ( , ) ( , ) 0Q x t w x tA q x t
x t

ρ∂ ∂
− + =

∂ ∂  (16)
The moment equilibrium equation about the central 

point of the isolated segment in Figure 2 reads as 
( , )( , )d ( , ) [ ( , ) d ] 0M x tQ x t x M x t M x t x
x

∂
+ − + =

∂  (17)
The simplification on (17) relates the bending moment 

to shear force as 
( , ) ( , )M x t Q x t
x

∂
=

∂  (18)
Substituting (18) into (16), the equilibrium equation 

is rewriten as 
2 2

2

( , ) ( , ) ( , ) 0M x t w x tA q x t
x t

ρ∂ ∂
− + =

∂ ∂  (19)
According to couple stress theory, the bending 

moment in a cross-section of the beam in Figure 1 is the 
result from both normal stress σxx and couple stress mxx in 
the cross-section, namely

( , ) d dxx xyA A
M x t z A m Aσ= +∫ ∫ . (20)

Substituting the expression σxx of (12) and the 
expression mxx of (13) into (20), one has 

2

2( ,  ) wM x t K
x

∂
= −

∂  (21)
where K is the bending stiffness of beam as 

2( 2 )K G I GAlλ= + +  (22)
with G and λ being the Lame’s constants defined by (3) 

and (4) respectively, A being the area of cross-section and 
2d

A
I z A= ∫  (23)

being the area second moment of cross-section. For 
a rectangular cross-section, I = bh3/12, where b and h 
are the width and height of the rectangular cross-section 
respectively. For a circular cross-section, I = πd4/64, where 
d is the diameter of the circular cross-section. 

Substituting (21) into the equilibrium equation (19), 
one has the motion differential equation of a Bernoulli-
Euler micro-beam 

2 4

2 4

( ,  ) ( ,  )w x t wA K q x t
t x

ρ ∂ ∂
+ =

∂ ∂  (24)
where K is the bending stiffness of beam defined by 

(22). 

4 Solution of micro-beam under forced vibra-
tion

4.1 Natural frequency
Letting q(x, t) = 0 in the motion differential equation 
(24), one has the free vibration differential equation of a 
Bernoulli-Euler beam 

2 4

2 4

( , ) 0w x t wA K
t x

ρ ∂ ∂
+ =

∂ ∂  (25)
According to method of separation of variables, one 

can assume the solution of differential equation (25) as the 
form 

( , ) ( ) ( )w x t t xη= Φ  (26)
where Φ(x) is called as mode function, and

( ) cos( ) sin( )t B t C tη ω ω= +  (27)
with ω being the natural frequency, B and C being the 

undetermined coefficients. 
Substituting (26) and (27) into (25), one has 

4
4

4

d 0
dx

βΦ
− Φ =

 (28)
where 

2
4 A

K
ρ ωβ =

 (29)
The general solution of the mode differential equation 

(28) reads as 
1 2 3 4( ) sin( ) cos( ) sinh( ) cosh( )x C x C x C x C xβ β β βΦ = + + +  (30)

where C1, C2, C3 and C4 are the undetermined 
coefficients. 

For the simply supported beam in Figure 1, the 
displacement boundary conditions are 

2 2

2 20
0

d d0,    0
d dx x L

x x Lx x= =
= =

Φ Φ
Φ = Φ = = =

 (31)
Substituting the mode equation (30) into the 

displacement boundary conditions (31) leads to C2 = C3 = 
C4 = 0, and 
sin( ) 0Lβ =  (32)

which requires 

 (33)
Then one can express the mode functions of the 

simply supported beam as 
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 (34)
when C1 = 1. From (29) and (33), one has the natural 

frequency of the simply supported beam 

 (35)
where K is the bending stiffness of beam defined by 

(22). 
4.2 Orthogonality of mode functions

Using (28) and (29), one has 
2

2
i2

d ( )
d

i
i

R A x
x

ω ρ= Φ
 (36)

where Φi and ωi are the ith order mode and natural 
frequency of the simply supported Bernoulli-Euler micro-
beam in Figure 1 respectively, and 

2

2

d( )
d

i
iR x K

x
Φ

=
 (37)

with K being the bending stiffness after (22). 
Multiplying both sides of (36) by the jth order mode 

function Φj(x) and integrating them along the beam length, 
one has 

2
2

j i20 0

d( ) ( ) ( )d
d

L Li
j i

Rx dx x A x x
x

ω ρΦ = Φ Φ∫ ∫  (38)
For the left side of (38), 

22

2 20 0
0 0

d dd d( ) d ( ) ( ) ( )d
d d d d

LL
L Lj ji i

j j i i
R Rx x x R x R x x
x x x x

Φ Φ
Φ = Φ − +∫ ∫

 (39)
The boundary conditions of the simply supported 

beam in Figure 1 gives 

0 0
( ) ( ) ( ) ( ) 0

L L

j jx R x x R x′ ′Φ = Φ =
 (40)

Substituting (40) and (37) into (39), one has 
22 2

2 2 20 0

dd d( ) d d
d d d

L L ji i
j

Rx x K x
x x x

Φ Φ
Φ =∫ ∫  (41)

where K being the bending stiffness after (22). 
From (38) and (41), one has 

2 2
2

i2 20 0

d d d ( ) ( )d
d d

L Lj i
i jK x A x x x

x x
ω ρ

Φ Φ
= Φ Φ∫ ∫  (42)

Interchanging the subscripts i and j in (42) leads to 
22

2
j2 20 0

dd d ( ) ( )d
d d

L Lji
j iK x A x x x

x x
ω ρ

ΦΦ
= Φ Φ∫ ∫  (43)

From (42) and (43), one has 
2 2

i0
( ) ( ) ( )d 0

L

i j j x x xω ω− Φ Φ =∫  (44)
The standard mode function of ith order is defined as 

( )( ) i
i

i

xx
m

ϕ Φ
=

 (45)
where 

2

0
( )d

L

i im A x xρ= Φ∫  (46)
Using (45), (46) and (44), one has 

0
( ) ( )d

L

i j ijA x x xρ ϕ ϕ δ=∫ , (47)

where δij is the Kronecker delta symbol . (47) illustrates 
the orthogonality of mode functions. 
4.3 Solution of forced vibration

According to the method of mode superposition, one 
can set the solution of the motion differential equation (24) 
as 

1
( , ) ( ) ( )j j

j
w x t t xη ϕ

∞

=

= ∑
, (48)

where φj(x) is the jth order standard mode function 
expressed by (45). Substituting (48) into the motion 
differential equation (24), one has 

2 4

2 4
1 1

d d
( ) ( ) ( , )

d d
j j

j j
j j

A x K t q x t
t x
η ϕ

ρ ϕ η
∞ ∞

= =

+ =∑ ∑
 (49)

Using (28) and (29) in (49), one has
2

2
2

1 1

d
( ) ( ) ( ) ( , )

d
j

j j j j
j j

A x A x t q x t
t
η

ρ ϕ ρ ω ϕ η
∞ ∞

= =

+ =∑ ∑
 (50)

Multiplying both sides of (50) by the ith order standard 
mode function φi(x) and integrating them along the beam 
length with using the orthogonality of standard mode 
functions expressed in (47), one has

2
2

2

d ( ) ( )
d

i
i i it Q t

t
η

ω η+ =
 (51)

where 

0
( ) ( , ) ( )d

L

i iQ t q x t x xϕ= ∫  (52)
According to (48), the initial condition of the simply 

supported micro-beam in Figure 1 can be expressed as  

0 0
1

( , ) ( ) ( )j jt t
j

w x t t xη ϕ
∞

= =
=

= ∑
 , 10 0

d( , ) ( )
d

j
j

jt t

w x t x
t t

η
ϕ

∞

== =

∂
=

∂ ∑
 (53)

Multiplying both sides of (53) by the ith order standard 
mode function φi(x) and integrating them along the beam 
length with using the orthogonality of standard mode 
functions in (47), one has 

0 00
( ) ( , ) ( )d

L

i it t
t w x t x xη ϕ

= =
= ∫  ,

0
0 0

d ( )d
d

L

i
t t

w x x
t t
η ϕ

= =

∂
=

∂∫
 (54)

Using the Duhamel integral, one obtains the solution 
of the differential equation (51) as 

00
0

sin1 d( ) [ ( )sin ( )]d ( ) cos
d

t i
i i i i it

ti i

tt Q t t t
t

ωηη τ ω τ τ η ω
ω ω=

=

= − + +∫
 (55)

Substituting (55) and (45) into (48) gives the solution 
of the Bernoulli-Euler simply supported micro-beam under 
forced vibration. 

Figure 3  A simply supported Bernoulli-Euler micro-beam 
with rectangular section subjected a concentrated force, 
where F(t) is the concentrated force functioned by (56) 

and a is the distance between the point concentrated force 
applied and the left-hand side of beam.
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Figure 3 shows a simply supported Bernoulli-Euler 
micro-beam subjected to a concentrated force formulated 
as 

( ) sin( )pF t P tω=  (56)
then the line density of distributed load is formulated 

as 

( ) ( ) ( )

0                others
,

         
q x t P t

a x a


= 

≤ ≤ + ∆ ∆  (57)
where ∆ is an infinitesimal value. Substituting (57) 

into (52), one has 

 (58)
Substituting (58) into (55) and using the initial 

conditions 

0
( ) 0i t
tη

=
=  and 0

d 0
d tt
η

=

=
 (59)

one has 

. (60)
Substituting (60) and (45) into (48) and using (34), 

one has the solution of forced vibration of the micro-beam 
in Figure 3, 

 (61)
In order to investigate the size effect of the forced 

vibration of micro-beam conveniently, the dimensionless 
deflection is defined as 

2'( , ) ( , ) / ( )Pw x t w x t
gAρ

=
 (62)

Substituting (61) into (62), the dimensionless 
deflection can be expressed as 

1
'( , ) ( ) ( )i i

i
w x t W x t

∞

=

= Ψ∑
 (63)

where 

 (64)
is called the ith order dimensionless amplitude mode 

and 

( ) sin( ) sin( )p
i p i

i

t t t
ω

ω ω
ω

Ψ = −
 (65)

is called the ith order dimensionless period mode. 

5 Analysis on forced vibration of micro-beam
In this section the micro-beam under forced vibration in 
Figure 3 is numerically investigated to reveal the size effects 
and the influences of Poisson's ratio, frequency ratio and 
loading location. The frequency ratio is defined as ωp/ω1, 
where ωp and ω1 are the load frequency and the first order 
natural frequency of the micro-beam, respectively. 

Figure 4 shows the curves of dimensionless deflection 
versus dimensionless time of a point in the micro-beam 
under forced vibration in Figure 3 based on the front 1, 
2, 3 and 4 orders of dimensionless modes of amplitude 
and period, respectively. The dimensionless deflection 
is calculated by (63) with x = L/2, and the dimensionless 
modes of amplitude and period are determined by (64) and 
(65), respectively. Figure 4(a) plots the curves during the 
period Tp = 2π/ωp when the value of frequency ratio is 0.2. 
It is found that the curves based on the front 1, 2, 3 and 4 
orders of dimensionless amplitude and period modes are 
very close and similar. Figure 4(b) plots the curves during 
the period T1 = 2π/ω1 when the value of frequency ratio 
is 2.0, we can also see that the dimensionless amplitudes 
and periodic modes of the front 1, 2, 3, and 4  orders are 
very close. This means the first order dimensionless modes 
of amplitude and period are the main contribution to 
the solution of the micro-beam under forced vibration. 
Therefore the forced vibration of the micro-beam are 
calculated using only the first order dimensionless modes 
of amplitude and period in the following sections.
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Figure 4  Curves of dimensionless deflection vs. dimensionless time of a point according to the front 1, 2, 3 and 4 orders 
of dimensionless amplitude and period modes, respectively. 

On the other hand, comparisons between Figure 
4(a) and Figure 4(b) illustrate that the frequency ratio is 
an important factor determining the performance of the 

micro-beam under forced vibration. Although when the 
frequency ratio is changed, the curve as a whole shows 
an "increasing-decreasing-increasing" trend, a small 
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frequency ratio will cause more fluctuations, and changing 
the frequency ratio can change the variation range of the 
dimensionless deflection.
5.1 Influences of frequency ratio

Figure 5 shows the curves of first order dimensionless 
amplitude mode of the micro-beam under forced vibration 
in Figure 3 with respect to the different values of frequency 
ratio. Figure 5(a) plots the curves when the value of 
frequency ratio is below 1.0. It is clear that each curve forms 
a hump and the altitude of hump rises with the increased 
value of frequency ratio when the value of frequency ratio 
is below 1.0. This means that the flexibility of the micro-
beam under forced vibration increases with the increased 
value of frequency ratio when the value of frequency ratio 
is below 1.0. Figure 5(b) plots the curves when the value 

of frequency ratio is above 1.0. It is clear that each curve 
forms a hump and the altitude of hump declines with 
the increased value of frequency ratio when the value of 
frequency ratio is above 1.0. This means that the flexibility 
of the micro-beam under forced vibration decreases with 
the increased value of frequency ratio when the value of 
frequency ratio is above 1.0. 

Figure 6 shows the curves of first order dimensionless 
period of the micro-beam under forced vibration in Figure 
3 with respect to the different values of frequency ratio. 
Figure 6(a) plots the curves when the value of frequency 
ratio is below 1.0. Figure 6(b) plots the curves when the 
value of frequency ratio is above 1.0. It is found that the 
frequency ratio has significant influence on the period 
mode of micro-beam under forced vibration. 
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Figure 5  Curves of first order dimensionless amplitude mode of the micro-beam under forced vibration with respect to 
the different values of frequency ratio.
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Figure 6  Curves of first order dimensionless period mode of the micro-beam under forced vibration with respect to the 
different values of frequency ratio. 

Figure 7 shows that the curves of dimensionless 
deflection versus dimensionless time of a point in the 
micro-beam under forced vibration in Figure 3 with respect 
to the different values of frequency ratio. Figure 7(a) plots 
the curves when the value of frequency ratio is below 1.0. 
Figure 7(b) plots the curves when the value of frequency 
ratio is above 1.0. It is clear that the frequency ratio has 
a significant influence on the performance of the micro-
beam under forced vibration. 

5.2 Size effect of forced vibration
Figure 8 shows the curves of the first order dimensionless 
amplitude mode of the micro-beam under forced 
vibration in Figure 3 with respect to the different values 
of dimensionless height, where L and h are the length and 
height of the micro-beam, respectively, and l is the material 
length-scale parameter. The first order dimensionless 
amplitude mode is calculated by (64) and the dimensionless 
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height is defined as the ratio of the height of micro-beam 
to the material length-scale parameter h/l. Figure 8(a) plots 
the curves when the value of frequency ratio is 0.2. It is clear 
that each curve is with a shape of hump, and the altitude of 
hump increases with the increased value of dimensionless 
height. This illustrates that the flexibility of the micro-beam 

under forced vibration rises with the increased value of 
dimensionless height. Figure 8(b) plots the curves when the 
value of frequency ratio is 2.0. The comparisons between 
Figure 8(a) and Figure 8(b) show that the frequency ratio 
has a significant influence on the amplitude mode of the 
micro-beam under forced vibration.
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Figure 7  Curves of dimensionless deflection vs. dimensionless time of a point in the micro-beam with respective to the 
different values of frequency ratio. 
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Figure 8  Curves of first order dimensionless amplitude mode of the micro-beam under forced vibration with respect to 
the different values of dimensionless height. 
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Figure 9  Curves of first order dimensionless period mode of the micro-beam under forced vibration with respect to the 
different values of dimensionless height. 

Figure 9 shows the curves of first order dimensionless 
period mode of the micro-beam under forced vibration in 
Figure 3 with respect to the different values of dimensionless 

height, where the first order dimensionless period mode is 
calculated by (65). Figure 9(a) plots the curves during the 
period Tp = 2π/ωp when the value of frequency ratio is 0.2. 
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It is clear that the curves with respect to the different values 
of dimensionless height are very close and similar, which 
illustrates that the dimensionless height has little influence 
on the period mode of the micro-beam under forced 
vibration. Figure 9(b) plots the curves during the period 
T1 = 2π/ω1 when the value of frequency ratio is 2.0. The 
comparisons between Figure 9(a) and Figure 9(b) show 
that the frequency ratio ωp/ω1 has a significant influence on 
the period mode of the micro-beam under forced vibration.

Figure 10 shows the curves of dimensionless deflection 
versus dimensionless time of a point in the micro-
beam under forced vibration in Figure 3 with respect to 
the different values of dimensionless height, where the 
dimensionless deflection is calculated by (63) with x = L/2 
based on the first order modes of dimensionless amplitude 
and period. Figure 10(a) plots the curves during the period 
Tp = 2π/ωp when the value of frequency ratio is 0.2. It is clear 
that the curve vertically extends with the increased value 
of dimensionless height. This is due to that the flexibility 

of the micro-beam increases with the increased value of 
dimensionless height. Figure 10(b) plots the curves during 
the period T1 = 2π/ω1 when the value of frequency ratio 
is 2.0. The comparisons between Figure 10(a) and Figure 
10(b) show that the frequency ratio ωp/ω1 has a significant 
influence on the performance of the micro-beam under 
forced vibration. 
5.3 Influences of loading location
Figure 11 shows that the curves of first order dimensionless 
amplitude mode of the micro-beam under forced vibration 
in Figure 3 with respect to the different loading locations. 
Figure 11(a) and Figure 11(b) plot the curves when the 
values of frequency are 0.2 and 2.0, respectively. It is found 
that the loading location has an obvious influence on the 
amplitude mode of the micro-beam under the forced 
vibration. It is also found that the frequency ratio has an 
obvious influence on the dimensionless amplitude mode of 
the micro-beam under the forced vibration. 

0.0 0.2 0.4 0.6 0.8 1.0
-20

-10

0

10

20 ×10-8

µ = 0.2; a / L = 0.2

(a) ωp / ω1 = 0.2D
im

en
sio

nl
es

s d
ef

le
ct

io
n,

 w
' 

Dimensionless time, t / Tp

 h / l = 1
 h / l = 2
 h / l = 3

                   
0.0 0.2 0.4 0.6 0.8 1.0

-20

-10

0

10

20 ×10-8

µ = 0.2; a / L = 0.2

(b) ωp / ω1 = 2.0
D

im
en

si
on

le
ss

 d
ef

le
ct

io
n,

 w
' 

Dimensionless time, t / T1

 h / l = 1
 h / l = 2
 h / l = 3

Figure 10  Curves of dimensionless deflection vs. dimensionless time of a point in the micro-beam with respect to the 
different values of dimensionless height. 
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Figure 11  Curves of first order dimensionless amplitude mode of the micro-beam under forced vibration with respect to 
the different location load applied.

Figure 12 shows the curves of first order dimensionless 
period mode of the micro-beam under forced vibration in 
Figure 3 with respect to the different loading locations. Figure 
12(a) and Figure 12(b) plot the curves when the values of 
frequency are 0.2 and 2.0, respectively. It is found that the 

loading location has little influence on the period mode of the 
micro-beam under the forced vibration. It is also clear that the 
frequency ratio has a significant influence on the period mode 
of the micro-beam under the forced vibration. 

Figure 13 shows the curves of dimensionless deflection 
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Figure 12  Curves of first order dimensionless period mode of the micro-beam under forced vibration with respect to the 
different location load applied.
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Figure 13  Curves of dimensionless deflection vs. dimensionless time of a point in the micro-beam with respect to the 
different location load applied.

6 Conclusions
The components of strain, curvature, stress and couple 
stress of a micro-beam are formulated according to the 
MCST and Bernoulli-Euler beam theory. The motion 
differential equation of a micro-beam is derived by using 
the D’Alembert’s principle. The solution of a micro-beam 
under forced vibration is obtained by using the method of 
separation of variables. Based on the numerical results, the 
important conclusions related to the behaviors of a micro-
beam under forced vibration are summarized as follows. 

1) The size effects of a micro-beam under forced 
vibration, which includes the size effects of deflection, 
amplitude mode and period mode, are obvious when the 
value of dimensionless height is small enough. 

2) The frequency ratio has a significant influence on 
both dimensionless modes of amplitude and period of 
a micro-beam under forced vibration, therefore it is the 
important factor that determines the behaviors of a micro-

beam under forced vibration. 
3) The loading location has a significant influence 

on the dimensionless amplitude mode of a micro-beam 
under the forced vibration, however its influence on the 
dimensionless period mode of a micro-beam under the 
forced vibration is negligible. 

Author Contributions: Bo ZHOU first proposed a method 
to analyze the size-dependently mechanical behaviors of 
a micro-beam under forced vibration by using modified 
couple stress theory, Bernoulli-Euler beam theory and 
D’Alembert’s principle. Shuai WANG solved a simply 
supported micro-beam under forced vibration according 
to the established governing equations and the method 
of separation of variables, and defined the dimensionless 
deflection, amplitude mode and period mode to investigate 
the size-dependently mechanical behaviors of a micro-
beam under forced vibration. Zhiyong WANG established 
the governing equations of a micro-beam under forced 

versus dimensionless time of the micro-beam under forced 
vibration in Figure 3 with respect to the different loading 
locations. Figure 13(a) and Figure 13(b) plot the curves 
when the values of frequency are 0.2 and 2.0, respectively. 
It is found that the loading location has obvious influence 

on the performance of the micro-beam under the forced 
vibration. It is also clear that the frequency ratio has 
obvious influence on the performance of the micro-beam 
under the forced vibration. 
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