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Abstract: 
For the 2- Degree of Freedom (DOF) lower limb exoskeleton, to ensure the system robustness and dynamic performance, a linear-
extended-state-observer-based (LESO) robust sliding mode control is proposed to not only reduce the influence of parametric 
uncertainties, unmodeled dynamics, and external disturbance but also estimate the unmeasurable real-time joint angular velocity 
directly. Then, via Lyapunov technology, the stability of the corresponding LESO and controller is proven. The appropriate and 
reasonable simulation was carried out to verify the effectiveness of the proposed LESO and exoskeleton controller.
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1 Introduction
For the 2- Degree of Freedom (DOF) lower limb exoskeleton, 
a linear-With the development of the world economy, and 
the improvement of human living level, wearable robots 
have played the key role in the field of medical rehabilitation 
and industrial production. The exoskeleton, a typical 
wearable robot, can help specific groups of people complete 
specific human-machine collaboration tasks, such as 
assisting hemiplegic patients with rehabilitation training or 
assisting workers to complete heavy tasks. However, since 
the complexity and fragility of the human environment, the 
requirements for the dynamic performance and robustness 
of the exoskeleton robot are relatively high. 

To improve the robustness and dynamic tracking 
performance of the exoskeleton robot system, many 
advanced nonlinear controllers have been investigated, 
such as fuzzy adaptive control [1], repetitive learning 
control [2], RBFNN adaptive control [3], and discrete-time 
extended state observer-based intelligent PD control [4]. 
The training mechanism has been roughly divided into 
two categories for the exoskeleton: active mechanism and 
passive mechanism [5]. More specifically, the designed 
training trajectory is predefined for the passive mechanism 
without considering the real-time human motion intention 
[6-7]. Conversely, the training trajectory is designed based on 
the current human’s motion intention for the active mode. 

The impedance control [8] and admittance control [9] usually 
are adopted to ensure compliance between humans and 
the exoskeleton. Li et al. [10] assumed admittance control to 
deal with a human subject’s intention. Yu et al. [11] proposed 
an adaptive impedance control strategy to compensate for 
dynamic uncertainties. 

To deal with the parameter uncertainty and external 
disturbance, designing the related observer to estimate the 
unknown form is used as the controller design compensation. 
The disturbance observer mainly includes sliding mode 
disturbance observer [12], extended state observer (ESO) [13], 
and so on. In [14], an extended state observer-based integral 
sliding mode control is adopted in the underwater robot. 
For the electro-hydraulic system, Guo et al. [15] proposed 
an ESO-based backstepping controller. Furthermore, Sun 
et al. [16] proposed a sliding-mode-disturbance-observer-
based tracking control strategy for Euler–Lagrange systems 
modeling uncertainties and external disturbances.

In this paper, as shown in figure 1, to improve the 
robustness and dynamic performance of the 2-DOF lower 
limb exoskeleton, a linear-extended-state-observer-based 
(LESO) robust sliding mode control is proposed to estimate 
the unmeasurable joint angular velocity and the error 
consisting of dynamic deviation and external disturbance. 
Finally, the related simulation experiment was carried out 
to verify the effectiveness of the controller.
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Figure 1  Robust sliding mode control diagram of 
2-DOF lower limb exoskeleton

2 Sliding Mode Control for 2-DOF Lower Limb 
Exoskeleton

2.1 Dynamic of the 2-DOF lower limb exoskeleton
The 2-DOF lower limb exoskeleton that needs to be modeled 
is shown in the right subgraph of figure 2. According 
to the human lower limb's physiological structure, the 
mechanical structure of the prototype is composed of thigh 
arm, shank arm, hip joint motor, and knee joint motor, 
and the hip joint motor is fixed on the bracket. Then, the 
operator and exoskeleton are connected by the bandage and 
3-Dimension (3-D) force sensor. Furthermore, the real-
time joint position is measured by the absolute encoder, but 
the joint velocity is measured directly.

At figure 2, O represents the origin of the coordinate 
system, 1θ and 2θ denote the angular positions of the hip joint 
and knee joint, mthand mshdenote the weights of the thigh 
arm and shank arm, athand ashdenote the length of the thigh 
arm and shank arm, lthand lshdenote the centroid distance, 
and g denote the gravity constant.
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Figure 2  Mechanical structure diagram and physical 
diagram of 2-DOF lower limb exoskeleton.

According to the [17], the ideal Lagrangian dynamic of 
the exoskeleton with human-robot interaction and joint 
friction is model as 

 (1)
where the  denote the joint angular position, 
2∈�τ denote the joint driving torque, 2

ext ∈�τ denote the 

real-time human-robot interaction torque. ,
and  are the symmetric and positive 

definite inertia matrix, Coriolis matrix and gravity torque 
in joint space, and the specific forms is shown as follow

 (2)

 (3)

 (4)
Furthermore,  is adopted to describe hip and 

knee joint friction, which is shown as 

 (5)
where k1,1and k2,1 are the coulomb friction coefficient, 

k1,2 and k2,2 are the viscous friction coefficient, respectively.
Generally speaking, the minimum inertia parameter 

from, 
 (6)

where  and  denote the regression 
matrix and unknown parameter vector. Further, according 
to the dataset,  can be obtained by many algorithms, 
such as least squares method, ridge regression or heuristic 
algorithm. 
2.2 Linear Extended State Observer Design
In this paper, the nominal values of the parameter vector 

 are utilized in the linear extended state observer and 
sliding mode controller designed, which usually is obtained 
by model parameter identification or generated by CAD 
software, such as SolidWorks and so on. However, the value 
of the parameter vector obtained by the above methods 
is often inaccurate in practice. Meanwhile, external 
disturbance may also affect the dynamic performance of 
the exoskeleton system. To address this problem, the LESO 
is designed to ensure the robustness of the 2-DOF lower 
limb exoskeleton. Considering the external disturbance 

f d extM(è)è+ C(è,è)è+ G(è) +ô(è) +ô=ô+ô    

, the real dynamic can be described as follow:
 (7)

Assumption 1: The parameter matrices or vectors 
, ,  and can be expressed as follow:

 (8)
where , ,  and  are the nominal and 

known matrices and vectors, and  is the symmetric 
and positive definite matrices. Meanwhile, the , 
,  and  are the unknown matrices.

Hence, (8) can be rewritten as 
 (9)

where the error ∆ denotes the lumped uncertainty, 
which is defined as 

 (10)
For the 2-DOF lower limb exoskeleton system, 

defined state variables as . Consequently, the 
corresponding state space model is expressed as follow

 (11)
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In order to accomplish the design missions discussed 
in Section 2.1, the addition lumped uncertainty  is 
extended as an additional state variable. Then, the extended 
state space model can be written as 

 (12)
where  represent the time derivative of the state 

variable , .
Assumption 2: The function  is global Lipschitz 

with respecting to  in its practical range; and addition 
lumped uncertainty and its time derivative  are both 
bounded.

The mission target of the LESO is not only observing 
the unmeasured state variable but also the estimating 
the lumped uncertainty state variable  for controller 
compensation in real time and to guarantee the robustness 
and dynamic performance of the system.

In this paper, (i=1,2,3) denotes the estimate value of 
state x, and  denotes the estimate error for the i-th 
state. We rewrite the extended state space model (12) as

 (13)
where

2 2 2 2 2 2

0 2 2 2 2 2 2

2 2 2 2 2 2
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  , , , 

2 2I ×  presents a unit matrix with the size of 2 20 × , and 2 20 ×  
presents a zero unit matrix with the size of 2 2× .

Then, corresponding LESO model is designed as 
follows

                     (14)
where  denotes the estimate error, 

2 3
0 0 0=[3  3  ]H Tω ω ω , which H is the observer gain, x  denotes 

the a type of observer tuning gain, which is selected as a 
positive parameter. 

Subtract (14) from (13), the state space model of x  is 
shown as follow

                       (15)
Let , , and  denote the scaled 

estimation error, then (15) can be rewritten as

,                       (16)

where the 
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, and .
Obviously, matrix A is Hurwitz. Hence, there exists a 

positive definite matrix P satisfying below qualification. 
 (17)

Theorem 1: For the LESO (14), when the Assumption 
2 hold, the state estimation errors will reach and stay in a 
predefined region with the appropriate constant .

Proof of Theorem 1: For the LESO (14), considering 
the following positive definite Lyapunov function:

 (18)
Then, the time derivative of is 

 (19)
Based on Assumption 2, the condition  

hold, and (19) can be rewritten as 

 (20)
where .
The time derivative of the Lyapunov function (19) is a 

negative function when (20) is established.

 (21)
Considering (21), when the bandwidth  is big 

enough, the estimation error  can quickly converge to a 
smaller range, which is acceptable in practical applications. 
2.3 Robust Sliding Mode Controller Design
In this section, the robust sliding mode controller is adopted 
based on LESO (14) to ensure the robustness and dynamic 
performance of the 2-DOF lower limb exoskeleton. For the 
system state space model (11) and (12), let xr express the 
desired trajectory. Obviously, the objective is to make the 
tracking error e=x- xr converge to zero.

Define an auxiliary sliding mode error 2s∈�  as
 (22)

with  being a diagonal matrix with positive 
diagonal element. Then, substituting (11), the time 
derivative of s  can be shown as

 (23)
Design a sliding mode tracking controller  as

 (24)
where K is the designed positive control gain.  is 

defined in Section 2.2. 
Since value of lumped uncertainty  is unknown and 

real-time joint angular velocity 2x is unmeasurable, based 
on the LESO (14), the robust sliding mode controller is 
redesigned as 

 (25)
The total Lyapunov function is defined as

 (26)
Substituting (23), and it’s time derivative is shown as 

 (27)
Substituting (25) into (27), considering Young's 

inequality, (27) can be rewritten as 

 (28)
where , which expresses the 
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lumped estimated error term. 
Considering the discussion of LESO (14) in section 

2.2 and (28), the amplitude of  is determined by the 
performance of LESO (14), which is related to the value of 
parameter . Meanwhile, the rate of convergence depends 
on control gain K and observer bandwidth . Then, if K is 
large enough and  is big enough, the satisfactory tracking 

effect can be obtained.

3 Simulation
In order to verify the effectiveness of the proposed robust 
sliding mode control, the simulation model is built to 
realize the passive mechanism of exoskeleton by Matlab/
Simulink, which is shown in figure 3.

Error

Linear Extended
State Observer

Robust Sliding
Mode Controller

2-DOF 
Lower Limb 
Exoskeleton

Figure 3  Configuration of the simulation for the 2-DOF lower limb exoskeleton 

Then, the dynamic model of 2-DOF lower limb 
exoskeleton is set as follows

 (29)
where,

  
,  ∆ is 

designed as follow
31

1 2 2
31 1

2 2 2 2

 = sin( );
 = sin( + );

t
t

π
π π

∆
∆  (30)

Then, according to the controller (25), the human-
robot interaction torque  is challenging to design and 
will be compensated by the controller so  is set as 0 in 
the simulation experiment. Furthermore, the desirable 
trajectory  of the exoskeleton is set as the human natural 

walking gait given by

                (31)
where 0.4ω π= , ,1( 1,2,3,4)kb k =  are -2.874, -2.423, 

1.227 and -0.1462, ,1( 1,2,3,4)kb k =  are 18.52, -2.016, 
-0.3704 and 0.201, 0,1θ = 10.07, ,2 ( 1,2,3,4)kb k =  are 17.62, 
-2.469, -3.82 and -0.1346, ,2 ( 1,2,3,4)kb k =  are -1.494, 11.72, 
1.014 and 0.2165, and 0,2θ = -17.49.

With considering the gait trajectory (31), the 
parameters of robust sliding mode controller are set as 

, diag{1000,1000}K = . Meanwhile, the 
parameter of LESO is set as . Then, in 
simulation experiment, the simulation step is set as 0.001 sec.
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Figure 4  Tracking performance and estimating performance of two joint position trajectories

Figure 4 shows the desired trajectory ,1 ,2[ , ]T
r r rθ θ θ=

, estimating trajectory 1 2
ˆ̂̂ [ , ]Tθ θ θ= , and actual trajectory 

3
1 3.2 10e −< ×  of two joints. Then, the tracking deviation 

3
1 3.2 10e −< ×  and 3

2 5.8 10e −< × , and the estimating 
deviation 9

1 1̂ 2.4 10θ θ −− < ×  and 9
2 2̂ 2.4 10θ θ −− < × . It can be 

seen that the tracking performance of controller and the 
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estimating performance of the LESO are satisfactory. 
Figure 5 shows the setting lumped uncertainty 

and estimating lumped uncertainty  
of two joints. More specifically, the estimating deviation of 
lumped uncertainty  and  It can be 
seen that the lumped uncertainty estimating performance 
of the LESO are satisfactory. 

Figure 6 shows the actual velocity trajectory 
and estimating velocity trajectory  of 

two joints. More specifically, the estimating deviation of 
 and  It can be seen that 

the velocity deviation estimating performance of the LESO 
are satisfactory. 
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Figure 5  Estimating performance of the lumped uncertainty of two joints

0 2 4 6 8 10
Time[sec]

-0.4

-0.2

0

0.2

0.4

0.6

0.8

V
el

oc
it

y[
ra

d/
s]

0 2 4 6 8 10
Time[sec]

-1

-0.5

0

0.5

1

V
el

oc
it

y[
ra

d/
s]

Figure 6  Estimating performance of two joint velocity trajectories   

4 Conclusion
In this paper, a LESO-based robust sliding mode 
controller (25) is designed to improve the robustness and 
dynamic performance, and the LESO (14) is designed to 
estimate the unmeasurable state variable and lumped 
uncertainty consisting of parametric uncertainties, 
unmodeled dynamics, and external disturbance. For the 
exoskeleton controller designed, system state estimation 
and disturbance compensation are adopted to ensure the 
system's robustness and dynamic performance. For further 
research plans, the nonlinear ESO will be considered in the 
exoskeleton controller designed. 
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