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Abstract: 
Developing lithium ion capacitors possessing both brilliant energy and power density is still significant for numerous re-searchers. In this paper, 
we synthesized MnO2 nanowires via a simple hydrothermal process. The nanostructure MnO2 can expose more electrochemical sites and thus 
optimize the kinetics of Li+. Moreover, we used MnO2 nanowires (MnO2 NWs) as anode and a N-doped porous carbon (NPC) as cathode to 
assemble lithium ion capacitors (MnO2 NWs//NPC LIC). Compared to the traditional supercapacitor with aqueous electrolyte, the MnO2 NWs//
NPC LIC exhibits a wider voltage of 0-4.2 V, which is helpful to enhance its energy and power density. Furthermore, MnO2 NWs//NPC LIC can 
deliver an excellent capacity of 150 mAh g-1 with an excellent energy density of 82.7 Wh kg-1 and power density of 1.05 kW kg-1. Meanwhile, a 
good cyclic stability of LICs with a 20% retention after 1000 times charge and discharge process proves its practical potential, indicating a good 
promising for the application in storage devices.
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1. Introduction

The uninterrupted consumption of fossil fuel cells for huge ener-
gy supply boosts the rapid development of energy storage devic-
es [1, 2]

. Compared to other energy storage devices [3], lithium ion 
batteries (LIBs) [4] get much attention because of its outstanding 
energy density (0.15-0.2 kWh kg-1) while supercapacitors (SCs) 
[5] stand out owing to its remarkable power density (2-5 kW kg-1) 
and stable cyclic ability (over 100000 times). Nowadays, the LIBs 
and SCs are widely applied in manufacturing industry, hybrid 
electrical vehicle, smart power grids and so on. However, the low 
power density and poor cyclic stability of LIBs and low energy 
density of SCs cannot meet the higher and higher demand of 
people. Therefore, many researchers turn their view to develop a 
new energy storage system with both outstanding energy density 
and power density.

Lithium ion capacitors (LICs) are born at this moment by 
combining a battery-type anode and a capacitor-type cathode 
[6-8]. To date, a few LICs have been reported containing a wide 
work voltage window, fast charge/discharge process and supe-
rior cycling life. Nevertheless, the existing LICs have an obvious 
imbalance between two electrodes, resulting from its capacitive 
reaction that cathode is faster than the intercalation reactions 

of anode. Therefore, it is of importance to choose proper anode 
materials with great rate capability to improve this imbalance for 
a high-performance LICs [9]. Among anode materials, MnO2 ex-
hibits a low cost and excellent electrochemical properties, grad-
ually becoming a substitute of expensive rare metal oxides. For 
example, Liu et al. developed bowl-like MnO2 nanosheets pre-
senting a specific capacitance of 379 F g-1 at a current density of 
0.5 A g-1 while the capacitance retained ratio of 60.5% from 0.5 to 
10 A g-1 and after 5000 times the capacitance can maintain 87.3% 
of the original value [10]. Besides, Won-Sub Yoon et al. reported 
a l-MnO2 3D nanoarchitecture for LIBs with high capacities of 
~1400 mAh g-1 at 100 mA g-1 and ~749 mAh g-1 at 1000 mA g-1 

[11]. Based on this excellent rate capability, MnO2 can effectively 
balance the kinetics of cation and anion, which is helpful to as-
semble a high-performance LICs.

Carbon materials (such as AC, CNT, graphene, etc) are 
widely selected as lithium ion supercapacitor electrodes because 
of their stable and devisable structure, superior conductive char-
acteristic and economic practicality [12, 13]. The wide application 
in both LIBs and SCs attracts a lot of attention of researchers. For 
a more excellent electrode, many workers put in a lot of effort 
to optimize the carbonaceous materials. For example, Huang et 
al. used F-GDY as anode with a great rate performance (1825.9 
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mAh g-1 at 0.1 A g-1, 979.2 mAh g-1 at 5 A g-1) [14]. Peng et al. 
reported a CNT-threaded N-doped carbon film (CNCF), show-
ing a remarkable specific capacitance of 340 F g-1 at 2 A g-1, long 
cycling life with a Coulombic efficiency of 97.7% after 10000 
times at 20000 mA g-1 as a supercapacitor electrode [15]. Inspired 
by these work, N-doped porous carbons are a kind of vital ma-
terial as the capacitor-type cathode for a more glorious lithium 
ion capacitor.

Here, we synthesized a kind of MnO2 nanowire via a sim-
ple one spot hydrothermal method. As an anode of LICs, MnO2 
nanowire displays a capacity of 185 mAh g-1at 200 mA g-1 with 
41.1 % capacity retention at 5C, which benefits from the 3D 
stacked nanostructure MnO2 NWs exposing more active 
sites, increasing surface area and improving the kinetics of 
Li ions (Li+). This brilliant rate capacity is beneficial for bal-
ancing kinetics between anode and cathode. Particularly, we de-
signed a non-aqueous LICs with a MnO2 nanowires as anode 
and an NPC material as cathode. This N-doped 3D porous 
carbon increases the specific surface area, offering more 
adsorption sites to shorten the ion transport pathway. The 
N doping optimizes the wettability between porous carbon 
cathode and the electrolyte. Therefore, the MnO2//NPC LIC 
can deliver a fine capacity of 150 mAh g-1 at 500 mAh g-1. More-
over, it demonstrates a superior energy density of 82.7 Wh kg-1 

at power density of 1050 W kg-1 with a good cycling life of LIC 
with a 20% retention after 1000 times. Especially, a red LED was 
powered by this MnO2//NPC LIC, which proved its excellent 
practical potential.

2. Experimental Section

2.1. Preparation of MnO2 NWs

The MnO2 NWs were prepared via the one-step hydrothermal 
method [16]. Firstly, 158.3 mg KMnO4 and 53.5 mg NH4Cl were 
separately added to 30 mL of deionized (DI) water and stirred 
with a duration of 15 min. After that, the mixture was stirred 
for 20 min and then dumped into a 100 mL autoclave at 200 oC 
for 24 h. After cooling down to ambient temperature, the sam-
ple was obtained by centrifuge and wash using DI and ethanol 3 
times. Finally, the MnO2 NWs was obtained after drying at 60 oC 
for 24 h in an oven.
2.2. Preparation of NPC

NPC was synthesized as previously reported [17]. Briefly, gelatin, 
citric acid and FeCl3 (mass ratio 3:1:4) were added in 0.03 L DI 
at 90 oC until dissolved. Then, the dried brown gel was calcined 
at a two-step process (300 oC for 60 min with 3 oC min-1, 800 oC 
for 120 min at 5 oC min-1) under an Ar/H2 atmosphere. After 
acid and DI washing, the black power was obtained. Finally, the 
power and KOH (mass ratio: 1:3) were mixed homogeneously 
and activated at 650 oC for 2h. After further acid and DI washing, 
the NPC was prepared in an oven at 60 oC.
2.3. Electrode Preparation

The anode was prepared by mixing MnO2 NWs, acetylene black 
and poly(vinylidene fluoride) (PVDF) with a weight ratio of 7:2:1 
in N-Methyl pyrrolidone (NMP). Then, the slurry was smeared 
on the Cu foil. Similarly, this cathode was synthesized contain-
ing N doped porous carbon, acetylene black and PVDF with the 

same ratio coated on an aluminum foil. All of the prepared elec-
trodes were dried under 100 oC for 12 h in a vacuum oven. These 
half cells (2032 coin-type cell) were assembled with lithium met-
al as counter electrode and reference electrode as well as com-
mercial LBC3008A as the electrolyte in the Ar-filled glove box. 
Before composing the LICs, we gave MnO2 NWs anodes in close 
contact with Li metal in the commercial electrolyte LBC3008A 
for 48 h for a prelithium process. The anode and cathode mass 
ratio were about 1:3. Specific capacity of MnO2 NWs//NPC LIC 
was calculated on a base of anode mass.
2.4. Characterizations 

The XRD test was measured on a Rigaku P/max 2200VPC 
with Cu Kα radiation to investigate the phase of MnO2 NWs 
and NPC. SEM (XL 30 ESEM-FEG, FEI Company) and TEM 
was performed to characterize the surface and interior porous 
features of as-prepared products. Cyclic voltammetry (CV) 
and electricimpedance spectroscopy (EIS) were executed on a 
CHI660E electrochemical workstation (Chenhua, Shanghai). 
Here, EIS was measured between 10-2 Hz and 105 Hz. Cycling 
and rate measurements were carried out by a LAND CT2001A 
battery measurement system.

The energy density and power density were calculated as 
follow [18]:
P=∆V×i/m	 (1)
E=P×t/3600	 (2)
∆V=(Vmax+Vmin)/2	 (3)

3. Results and discussion

3.1. MnO2 NWs as the anode

hydrothermal synthesis

MnO4
- NH4

+ MnO2

Figure 1. The schematic diagram of MnO2 nanowires.

The MnO2 NWs were prepared via a simple hydrothermal 
process in Figure 1. KMnO4 as Mn source was reduced from Mn 
(VII) to Mn (IV) to form a stable MnO2 NWs. Following is the 
chemical reaction:

The nanostructure MnO2 possesses large surface area and 
more electrochemical sites, and hence optimize the kinetics of 
Li+. [19] From SEM images in Figure 2a, MnO2 exhibits nanow-
ire morphology. Many MnO2 NWs are intertwined presenting 
a three-dimensional (3D) network. From a magnification SEM 
image in Figure 2b, the length of MnO2 NWs is about 500 ~ 
700 nm with a diameter of about 50 nm. Moreover, XRD anal-
ysis was conducted to get a further crystal phase of MnO2 NWs 
in Figure 2c. It shows that the obtained MnO2 nanowires are 
well consistent with the pure MnO2 with a space group of I4/m 
(87) (JCPDS: 44-0141). Moreover, the diffraction peaks at 12.8o, 
18.1o, 28.8o, 36.7o, 37.5o, 39.0o, 42.0o, 49.9o, 56.4o, 60.3o, 65.1o, and 
69.7o correspond to the (110), (200), (310), (400), (211), (330), 
(301), (411), (600), (521), (002) and (541) planes, respectively, 
which further confirms the successful preparation of a high crys-
tal pure phase MnO2 NWs.
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Figure 2. (a) SEM image of MnO2 NWs with a scale of 3 μm.	
(b) Magnified SEM image with a scale of 500 nm. (c) XRD 

pattern of MnO2 NWs, which confirms that high crystal pure 
phase 3D stacked MnO2 NWs are synthesized.

In order to study the electrochemical performance of MnO2 
NWs as anode in LICs, half cells with a counter electrode of Li 
foil between 0.01 and 3 V (vs. Li/Li+) was tested. In Figure 3a, 
CV curves of MnO2 electrodes at a series of scan rates between 
0.1-0.5 mV s-1 are presented to reflect the Li+ transfer in/out of 
the MnO2 NWs. At a scan rate of 0.1 mV s-1, the reduction peak 
at about 0.45 V is assigned to the SEI formation and the trans-
form from Mn (IV) to Mn (0). The oxidation peak at about 1.3 V 
is attributed to the reoxidation from Mn (0) to Mn (IV). The oth-
er CV curves display a similar reaction mechanism. The charge/
discharge curves in Figure 3b also proves this process. The reac-
tion is summarized as follow:[20]

Moreover, the CV curves at other scan rates exhibit simi-
lar redox peaks and retain the curve shape, exhibiting that the 
MnO2 NWs have a satisfied rate capacity. Especially, the excel-
lent rate properties are proved from Figure 3c. When the current 
density is 0.2, 0.4, 0.6, 0.8, 1 and 2 A g-1, the sample shows stable 
capacities of 185, 175, 122, 100, 76 and 25 mAh g-1. That is to say, 
when the current density increases 5 times, the capacity reten-
tion reaches 41.1%. More importantly, the MnO2 NWs anode re-
mains 170 mAh g-1 after 1000 cycles in Figure 3e, displaying the 
fine long cyclic stability. The EIS result is conducted in Figure 
3d. As known, the smaller the diameter of this semicircle is, the 
faster the charge transfer. A small charge transfer resistance of 
MnO2 NWs benefits to the fast insertion and de-intercalation of 
Li+. These outstanding performances are attributed to the nano-
structure of MnO2 and the exposed active sites, which makes 
MnO2 NWs a proper candidate for LICs anode.
3.2. NPC as the cathode

N-doped hierarchical porous carbon was chosen as cathode for 
the LICs. In Figure 4a, a bulk carbon material with a macropo-
re structure is observed. The surface macropores are distributed 
uniformly with about 500 nm in diameter. The TEM image in 
Figure 4b exhibits willow-leaf-shaped mesopores. These special 
pores show a ∼160 nm long and a ∼40 nm wide. This particular 
porous structure will effectively shorten transfer pathway and ac-

celerate the transfer of the electrolyte ion. In Figure 4c, the XRD 
pattern of NPC reflects the degree of graphitization. The peaks 
at about 25o and 44o are attributed to (002) and (100) planes and 
this wide shape demonstrates the amorphous nature. This defec-
tive structure is resulted from the N and O atom defects reported 
in previous work. Moreover, the N-doping improves the contact 
of electrode and electrolyte, further enhancing the electrochem-
ical activation of NPC as cathode for LICs.[21]

Figure 3. The Li+ storage properties of MnO2 NWs anode: (a) 
CV curves of MnO2 NWs with scan rates from 0.1 to 0.5 mV s-1, 
(b) The selected charge-discharge curves at 500 mA g-1, (c) The 

rate properties with current densities between 200-2000 mA 
g-1, (d) EIS spectroscopy between 0.01 and 105 Hz, (e) the long 
cycling property and Coulombic efficiencies of this sample at 

500 mA g-1, displaying a satisfied electrochemical performance. 

Figure 4. (a) SEM image of NPC at 1μm,	(b)	TEM	image	of	
NPC	at	200	nm,	(c)	XRD	pattern	of	NPC,	which	shows	that	

N-doped	porous	carbon	possesses	a	meso and macro structure. 
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The electrochemical property of nitrogen doped hierarchi-
cal porous carbon materials was studied in Figure 5. The CV 
curve at 1mV s-1 with an extended potential window of 2-4.2 
V was shown in Figure 5a. Non-redox peaks in these rectan-
gles reflect an ideal capacitive contribution, which corresponds 
to the charge/discharge curve without any platform in Figure 
5b. The selected curves of the 1st, 2nd, 50th and 100th cycles 
overlap well with each other, illustrating that the NPC cathode 
has the super stable adsorption ability at 0.5 A g-1. Moreover, the 
rate property test of NPC cathode in Figure 5c give a series ca-
pacity of 97, 75, 66 and 60 mAh g-1 at 200, 600, 1000 and 2000 
mA g-1, respectively. EIS test in Figure 5d shows that the NPC 
cathode has a small charge transfer resistance and ion diffusion 
resistance, further presenting a candidate with a fast ion storage. 
The cycling performance of NPC in Figure 5e illustrates that the 
capacity of NPC cathode remains about 30 mAh g-1 after 700 
cycles. This good adsorption ability is attributed that the 3D 
porous structure increases the specific surface area, offers more 
adsorption sites and shortens the ion transport pathway. The N 
doping optimizes the wettability between NPC cathode and the 
electrolyte, much suitable for a satisfied performance LIC.

Figure 5. The PF6
- absorption ability of the NPC cathode: (a) 

the CV curves of NPC at 1 mV s-1, (b) The charge/discharge 
curves at the 1st, 2nd, 50th and 100th cycle at 500 mA g-1, (c) 
The rate property of NPC at 200, 600, 1000, 2000 mA g-1, (d) 
The EIS spectrum of NPC between 0.01 and 105 Hz, (e) The 

cycling life of NPC at 500 mA g-1, displaying superior adsorp-
tion ability.

3.3. MnO2 NWs//NPC LICs

Utilizing the prepared prelithiated MnO2 nanowires as anode 
and the NPC we previously reported as cathode, a LICs with a 

commercial electrolyte of LBC3008A was assembled. The whole 
charge/discharge process is explained in detail from Figure 6. In 
a charge process, the NPC cathode adsorbs the PF6

- in the surface 
macro and meso pores with N-doping defects. At the same time, 
the Li+ is transferred and reacts to the MnO2 nanowires anode. 
The discharge process is the opposite of the charge process. In 
order to balance the anode and cathode, we make a mass ratio of 
anode and cathode be 1:3 according to the literature. Moreover, 
the 3D network of stacked MnO2 nanowires offers more reaction 
sites for a fast Li+ migration, effectively offsetting the intrinsic 
slow migration rate of Li+. The 3D porous structure offers more 
adsorption sites and the N doping optimizes the wettability of 
NPC. Both of these two advantages make MnO2 nanowires an-
ode and NPC cathode more matched to construct MnO2//NPC 
LICs.

Figure 6. The Schematic model of the LICs assembled by MnO2 
nanowires as anode and NPC as cathode, accuratly interpreting 

the charge/discharge mechanism of MnO2 NWs//NPC LICs.

The electrochemical property of MnO2//NPC LICs is eval-
uated in Figure 7. Figure 7a exhibits CV curves at different scan 
rate with an extended potential window of 0-4.2 V. Similar near 
rectangles and non-redox peaks display an ideal capacitive con-
tribution, which corresponds to no platform in the charge/dis-
charge curve in Figure 7b. The maintenance of rectangle shape 
further reflects the high rate performance. The charge and dis-
charge curves of MnO2//NPC LICs exhibit a capacity of 250, 156 
and 100 mAh g-1 (on base of anode mass) at 0.2, 0.4, 0.6 A g-1, 
respectively. Its result also confirms the MnO2//NPC LICs has a 
good rate property. More interestingly, the satisfied retention of 
20% after 1000 times at 500 mA g-1 in Figure 7c, demonstrates 
a stable performance of the MnO2//NPC LICs. The energy den-
sity of 82.7 Wh kg-1 and a remarkable power density of 1.05 kW 
kg-1 is comparable to those aqueous supercapacitors such as LF-
P@C//ARGO [22], LMO/AC Li‐Ion flow capacitor [23] and so on 
in Figure 7d. This illuminates the extended potential range can 
largely improve the energy density of MnO2//NPC LICs. The 
success of a lighted red LED (Voltage: 2 V, current range: 5 mA-
17.5 mA) (inset Figure 7d) powered by the MnO2//NPC LICs 
further proves its excellent practical potential.
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Figure 7. The electrochemical properties of MnO2 NWs//NPC 
LICs: (a) The CV curves from 1 mVs-1 to 500 mVs-1, (b) The 
charge/discharge curves at 200, 400, 600 and 800 mA g-1, (c) 

The cycling stability at 500 mA g-1 after 1000 times, (d) The re-
lationship of energy density and power density of MnO2 NWs//
NPC LICs and the comparison with other literatures. The inset 

is a photo show of a lighted red LED powered by our MnO2 
NWs//NPC LICs.

4. Conclusion

In this paper, the MnO2 nanostructure was successfully prepared 
via a simple chemical reaction. The obtained MnO2 nanowires 
expose more active sites and improve the reaction rate with Li+. 
As an anode of LICs, it delivers a capacity of 185 mAh g-1 at 0.5 
A g-1 and accompanies a 41.1 % capacitance maintaining at 1 
A g-1. The fine rate performance is beneficial for balancing the 
kinetics between anode and cathode. Moreover, the NPC mate-
rial was chosen as cathode to design a non-aqueous LICs. The 
N-doped 3D porous carbon offers a larger specific surface area, 
more adsorption sites and a shorter ion transport pathway. The N 
doping optimizes the wettability between NPC cathode and the 
electrolyte. In consequence, the MnO2//NPC LICs can display 
a brilliant capacity of 150 mAh g-1 at 500 mA g-1. Meanwhile, 
it demonstrates a high energy density of 82.74 Wh kg-1 and a 
brilliant power density of 1.05 kW kg-1. The success of powering 
a red LED further proves its excellent practical potential, which 
provides a realizable thought for the future storage system.
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