Research and Application of Materials Science

Effects of Nickel on the Microstructure, Mechanical properties and Corrosion Resistance of CoCrFeNixAl0.15Ti0.1 High Entropy Alloy

QIWu (School of Mechanical Engineering, University of Science and Technology Beijing;Key Laboratory of Fluid Interaction with Material, Ministry of Education), SUYitian (School of Mechanical Engineering, University of Science and Technology Beijing;Key Laboratory of Fluid Interaction with Material, Ministry of Education), YANGXiao (Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences), ZHAGuannan (Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences), ZHAOYi (Unit 92228, People's Liberation Army), ZHANGYa (Beijing Aerospace Petrochemical Technology & Equipment Engineering Corporation Limited), WANGWenrui (School of Mechanical Engineering, University of Science and Technology Beijing;Key Laboratory of Fluid Interaction with Material, Ministry of Education)


The present work investigates the effect of Ni on the microstructure, mechanical properties, and corrosion resistance of CoCrFeNixAl0.15Ti0.1 high-entropy alloys. It was found that the appropriate addition of Ni element in the alloy is beneficial to reduce the average grain size of the alloy. The yield strength and tensile strength of the alloy under fine-grain strengthening have also been increased, while the ductility of the system in this study has not been significantly affected. In terms of corrosion resistance, CoCrFeNixAl0.15Ti0.1 high-entropy alloys form a dense passive film at open circuit potential, possessing good corrosion resistance. However, with the excessive addition of Ni content in the alloy, the pitting corrosion resistance of the alloy in the environment of chloride ions will decrease due to the relative decrease of the relative content of Cr element. This work also can provide guidances for the design and development of new precipitation-strengthened CoCrFeNi-based high-entropy alloys with excellent comprehensive properties.


High-entropy alloy, Microstructures, Mechanical properties, Corrosion resistance

Full Text:



E.P. George, D. Raabe, R.O. Ritchie, High-entropy alloys,Nature Reviews Materials [J].2029, 4(8): 515-534.

Q. Ding, Y. Zhang, X. Chen, et al.. Tuning elementdistribution, structure and properties by composition inhigh-entropy alloys, Nature [J].2019, 574(7777): 223-227.

C.M. Lin, H.L. Tsai, H.Y. Bor. Effect of aging treatment onmicrostructure and properties of high-entropyCu0.5CoCrFeNi alloy, Intermetallics [J].2010,18(6):1244-1250.

G. Laplanche, A. Kostka, O.M. Horst, et al.. Microstructureevolution and critical stress for twinning in theCrMnFeCoNi high-entropy alloy, Acta Mater [J]. 2016(118):152-163.

X. Yang, Y. Zhang. Prediction of high-entropy stabilizedsolid-solution in multi-component alloys, Mater. Chem.Phys. 2012,132(2): 233-238.

Z.G. Wang, W. Zhou, L.M. Fu, et al.. Effect of coherent L12nanoprecipitates on the tensile behavior of a fcc-basedhigh-entropy alloy, Mater. Sci. Eng. 2017(696): 503-510.

W. Wang, W. Qi, L. Xie, X. Yang, J. Li, Y. Zhang,Microstructure and Corrosion Behavior of(CoCrFeNi)95Nb5 High-Entropy Alloy Coating Fabricated byPlasma Spraying, Materials. 2019,12(5): 694.

W. Qi, W. Wang, X. Yang, et al.. Effect of Zr on phaseseparation, mechanical and corrosion behavior ofheterogeneous CoCrFeNiZrx high-entropy alloy, J Mater SciTechnol. 2022(109): 76-85.

W. Huo, F. Fang, H. Zhou, et al.. Remarkable strength ofCoCrFeNi high-entropy alloy wires at cryogenic andelevated temperatures, Scripta Mater. 2017(141): 125-128.

P. Wu, K. Gan, D. Yan, et al.. A non-equiatomic FeNiCoCrhigh-entropy alloy with excellent anti-corrosionperformance and strength-ductility synergy, Corros. Sci.2021(183): 13.

H. C. Liu, C. W. Tsai. Effect of Ge addition on themicrostructure, mechanical properties, and corrosionbehavior of CoCrFeNi high-entropy alloys, Intermetallics.2021(132):47.

Y. Fu, J. Li, H. Luo, et al.. Recent advances onenvironmental corrosion behavior and mechanism ofhigh-entropy alloys, J Mater Sci Technol. 2021(80):217-233.

E. Nembach, G. Neite. Precipitation hardening ofsuperalloys by ordered γ′-particles, Prog. Mater Sci.1985,29(3): 177-319.

W. F. Miao, D. E. Laughlin. Precipitation hardening inaluminum alloy 6022, Scripta Mater. 1999,40(7): 873-878.

M. J. Yao, E. Welsch, D. Ponge, et al.. Strengthening andstrain hardening mechanisms in a precipitation-hardenedhigh-Mn lightweight steel, Acta Mater. 2017(140):258-273.

D. Chen, F. He, B. Han, et al.. Synergistic effect of Ti and Alon L12-phase design in CoCrFeNi-based high entropy alloys,Intermetallics. 2019(110):67-68.

W.H. Liu, T. Yang, C.T. Liu. Precipitation hardening inCoCrFeNi-based high entropy alloys, Mater. Chem. Phys.2018(210):2-11.

Y. Yu, F. He, Z. Qiao, et al.. Effects of temperature andmicrostructure on the triblogical properties ofCoCrFeNiNbx eutectic high entropy alloys, J. Alloys Compd.2019(775): 1376-1385.

W. Liu, J. He, H. Huang, et al.. Effects of Nb additions onthe microstructure and mechanical property of CoCrFeNihigh-entropy alloys, Intermetallics. 2015(60): 1-8.

H. Ma, C.H. Shek, Effects of Hf on the microstructure andmechanical properties of CoCrFeNi high entropy alloy, J.Alloys Compd. 2020(827):456.

H. Jiang, K. Han, D. Qiao, et al.. Effects of Ta addition onthe microstructures and mechanical properties of CoCrFeNihigh entropy alloy, Mater. Chem. Phys. 2018(210): 43-48.

F. Zheng, G. Zhang, X. Chen, et al.. A new strategy oftailoring strength and ductility of CoCrFeNi basedhigh-entropy alloy, Mater. Sci. Eng. 2020(774):98-102.

J.Y. He, H. Wang, H.L. Huang, et al.. Aprecipitation-hardened high-entropy alloy withoutstanding tensile properties, Acta Mater. 2016(102):187-196.

W. Wang, J. Wang, Z. Sun, et al.. Effect of Mo and agingtemperature on corrosion behavior of (CoCrFeNi)100-xMoxhigh-entropy alloys, J. Alloys Compd. 2020(812):152139.

Y. J. Hsu, W. C. Chiang, J. K. Wu, Corrosion behavior ofFeCoNiCrCux high-entropy alloys in 3.5% sodium chloridesolution, Mater. Chem. Phys. 2005,92(1): 112-117.

P. Muangtong, A. Rodchanarowan, D. Chaysuwan, et al..The corrosion behaviour of CoCrFeNi-x (x = Cu, Al, Sn) highentropy alloy systems in chloride solution, Corros. Sci.2020(172):1-2.

Y. Shi, B. Yang, X. Xie, et al.. Corrosion of AlxCoCrFeNihigh-entropy alloys: Al-content and potential scan-ratedependent pitting behavior, Corros. Sci. 2017(119): 33-45.

Y. Shi, L. Collins, R. Feng, et al.. Homogenization ofAlxCoCrFeNi high-entropy alloys with improved corrosionresistance, Corros. Sci. 2018(133):120-131.

C. Liu, W. Peng, C.S. Jiang, et al.. Composition and phasestructure dependence of mechanical and magneticproperties for AlCoCuFeNix high entropy alloys, J Mater SciTechnol. 2019,35(6):1175-1183.

C. C. Juan, C. Y. Hsu, C. W. Tsai, et al.. On microstructureand mechanical performance of AlCoCrFeMo0.5Nixhigh-entropy alloys, Intermetallics. 2013,32(0):401-407.

W. Qi, W. Wang, X. Yang, et al.. Effects of Al and Tico-doping on the strength-ductility- corrosion resistance ofCoCrFeNi-AlTi high-entropy alloys, J. Alloys Compd.2022(925):166751.

S. Gangireddy, B. Gwalani, R.S. Mishra. Grain sizedependence of strain rate sensitivity in a single phase FCChigh entropy alloy Al0.3CoCrFeNi, Mater. Sci. Eng.2018(736): 344-348.

J. Su, D. Raabe, Z. Li. Hierarchical microstructure design totune the mechanical behavior of an interstitial TRIP-TWIPhigh-entropy alloy, Acta Mater. 2019(163): 40-54.

N.K. Adomako, G. Shin, N. Park, et al.. Laser dissimilarwelding of CoCrFeMnNi-high entropy alloy and duplexstainless steel, J Mater Sci Technol. 2021(85): 95-105.

W.H. Liu, Z.P. Lu, J.Y. He, et al.. Ductile CoCrFeNiMox highentropy alloys strengthened by hard intermetallic phases,Acta Mater. 2016(116): 332-342.

T. Yang, Y.L. Zhao, J.H. Luan, et al..Nanoparticles-strengthened high-entropy alloys forcryogenic applications showing an exceptionalstrength-ductility synergy, Scripta Mater. 2019(164):30-35.

M. H. Cai, C. Y. Lee, Y. K. Lee. Effect of grain size on tensileproperties of fine-grained metastable β titanium alloysfabricated by stress-induced martensite and its reversetransformations, Scripta Mater. 2012,66(8): 606-609.

O. León-García, R. Petrov, L.A.I. Kestens. Void initiation atTiN precipitates in IF steels during tensile deformation,Mater. Sci. Eng. 2010,527(16-17): 4202-4209.

J. He, N. Li, S.K. Makineni, et al.. Effects of minor Nballoying on the thermal stability and mechanical responsesof a γ/γ′ type high-entropy alloy with high Fe content,Mater. Sci. Eng. 2022(851):6-8.

Y. Wang, J. Jin, M. Zhang, et al.. Influence of plasticdeformation on the corrosion behavior of CrCoFeMnNihigh entropy alloy, J. Alloys Compd. 2022(891):79-92.

J. B. Lee. Effects of alloying elements, Cr, Mo and N onrepassivation characteristics of stainless steels using theabrading electrode technique, Mater. Chem. Phys.2006,99(3): 224-234.

Z. Xu, H. Zhang, X. Du, et al.. Corrosion resistanceenhancement of CoCrFeMnNi high-entropy alloy fabricatedby additive manufacturing, Corros. Sci. 2020(177):34-36.

H. Luo, Z. Li, A.M. Mingers, et al.. Corrosion behavior of anequiatomic CoCrFeMnNi high-entropy alloy compared with304 stainless steel in sulfuric acid solution, Corros. Sci.2018(134): 131-139.



  • There are currently no refbacks.

Copyright (c) 2022 Wu QI, Yitian SU, Xiao YANG, Guannan ZHA, Yi ZHAO, Ya ZHANG, Wenrui WANG

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.