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Abstract
Car following (CF) models are an appealing research area because they fundamentally describe longitudinal interactions of vehicles on 
the road, and contribute significantly to an understanding of traffic flow. There is an emerging trend to use data-driven method to build 
CF models. One challenge to the data-driven CF models is their capability to achieve optimal longitudinal driven behavior because a 
lot of bad driving behaviors will be learnt from human drivers by the supervised learning manner. In this study, by utilizing the deep 
reinforcement learning (DRL) techniques trust region policy optimization (TRPO), a DRL based CF model for electric vehicle (EV) is 
built. The proposed CF model can learn optimal driving behavior by itself in simulation. The experiments on following standard driving 
cycle show that the DRL model outperforms the traditional CF model in terms of electricity consumption.
Keywords: autonomous electric vehicle, car following model, deep reinforcement learning, trust region policy optimization

1. Introduction 
Electric vehicle (EV) and autonomous vehicle (AV) are two flourishing technologies which would promote environment 
sustainability and improve community livability. Accomplish of the high level autonomous electric vehicle (AEV) requires 
breakthrough in numerous technology, among which longitudinal dynamics control is an unquestionable key factor gearing 
up the safety and efficiency of AEV. 

In the transportation research field, car-following models have been successfully applied to describe longitudinal driving 
behavior under car following (CF) scenario. In order to analyze traffic flow in simulation program as simple as possible, 
researchers are often interested in describing CF behavior with mathematical models (Chandler et.al 1958, Maerivoet & 
De Moor, 2005). Although mathematical model based CF models are powerful and useful tools for analysis of driving 
behavior, there still require significant improvements. First, a calibration process is required for most models before they 
are able to analyze and simulate real traffic dynamics. Calibration, however, is a onerous process needed further studies 
(Punzo et.al, 2012). Second, the dynamics between driving environment and CF decision is very complex. A simple 
mathematical model is not able to fully model the correlation between environment and decision.

Recent developments in the field of big data have led to an interest in development of data-driven CF models (He et.al, 
2015). Neural networks (NNs), a learning system with universal approximation ability, have been extensively used to 
describe CF behaviors because their ability to imitate human learning process from data. For example, Chong et.al, (2013) 
attempts to use fuzzy NNs to achieve data-driving CF models. Hongfei et.al, (2003) shows that the NNs models could 
accurately describe the following behavior of a driver after the training course on field data. Several studies (Khodayari 
et.al, 2012, Zheng et.al, 2013) have incorporated reaction delay into NNs models. 

In recent years, deep learning (NNs with deep structure) have won numerous contests in pattern recognition and machine 
learning (Schmidhuber, 2015). To better model the CF behavior, researches have been using deep learning technique. The 
deep recurrent neural networks (RNNs) are the most popular deep learning structure for model CF because of its capability 
to model memory effect in processing sequential data. Wang et.al, (2018) have recently developed a deep RNN model for 
the representation of memory effect in the CF model, it is reported that their model achieves higher prediction accuracy 
than shallow NNs based models. Similar researches can be found in (Zhou et.al, 2017, Huang et.al, 2018).

The above studies especially the deep learning approaches demonstrate great flexibility of neural networks for modeling 
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CF behavior. However, these neural networks are trained in a supervised learning manner using real drivers' trajectories. 
Create a datasets with perfect CF trajectories might be expensive and unfeasible. The human driver itself is not perfect, 
whose driving behavior is limited by reaction delay, bad temper and so on. Therefore a CF model trained by supervised 
learning has inevitably learned a lot of bad driving behaviors from imperfect drivers, therefore is difficult to provide the 
best CF behavior. In problems such as Go (Silver et.al, 2016) and computer games (Mnih et.al, 2015), reinforcement 
learning (RL) successfully address these challenges. The essence of RL is learning through interaction.  RL agent interacts 
with its environment and, upon observing the consequences of its actions, can learn to alter its own behaviour in response to 
rewards received (Arulkumaran et.al, 2017). A RL agent can theoretically achieve behavior that maximizes cumulative reward.

Deep learning has greatly enhance RL, with the exploitation of deep learning algorithms within RL defining the field 
of“deep reinforcement learning” (DRL). There are numerous DRL approaches including deep Q networks (DQN) (Mnih 
et.al, 2015), Evolutionary Strategy (ES) (Salimans et.al, 2017) and various policy gradient methods, such as TRPO 
(Schulman et.al, 2015), A3C (Mnih et.al, 2016), DDPG (Lillicrap et.al, 2015) and PPO (Schulman et.al, 2017). Those 
algorithms hold great promise for learning to solve challenging decision make problems such as CF. 

The goal of this paper is to utilize DRL to achieve economic and safe longitudinal driving for AEV. First, we build a simulation 
model for electric vehicle using real-world data. Then we formulate the CF model as a markovian decision process (MDP) and 
propose to use DRL algorithm to solve the MDP. Finally we conduct simulated experiments on the new european driving cycle 
(NEDC), the results show that the DRL based CF approach is more energy-efficient than conventional CF models.

2. The Simulation Model For Electric vehicle
The EV powertrain and appearance of Roewe E50 are shown in Figure 1. The powertrain is composed of a drive motor 
and a power battery. The efficiency map of the traction motor is given in Figure 2. The main parameters of Roewe E50 are 
listed in Table 1.

Figure 1  The appearance and powertrain of Roewe E50

Figure 2  The efficiency map of traction motor for Roewe E50
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Table 1 Main parameters of Roewe E50 specification

Parameters Value Parameters Value
Full mass 1391.2kg Air drag coefficient 0.34

Windward area 1.83m2 Main reducer ratio 6.2
Rolling resistance coefficient 0.0011 Battery capacity 77.7 Ah

Wheel radius 0.262m Peak velocity 130 km/h

There are two approaches to simulate the powertrain: the backward and forward approaches (Onori et.al, 2016). The 
backward approach is chosen in this paper. In a backward simulator, no driver model is necessary, the desired speed is a 
direct input to the simulator, and the energy consumption is output. The tractive force of the vehicle is calculated by:
  (1)

where  is the rotational inertia coefficient, α is the acceleration of the vehicle, ,  is the rolling resistance 
force ,  is the rolling resistance coefficient. ,  is the air density,  is the air drag 
coefficient,  is the windward area,  is the velocity of the vehicle.

The torque, rational speed and power of vehicle demand is computed by

  (2)

where  is the Wheel radius. The power of the motor is .  is the transmission efficiency. The power 
of the battery is then computed by .  is the efficiency of the motor, which is computed by the 
efficiency map given in Figure 2.

Then the battery current can be computed by

  (3)

 is the open-circuit voltage of the battery, and  is the internal resistance of battery. Then the consume of SOC of the 
battery can be computed by 

  (4)

where Q is the battery capacity. To make sure the simulation model for EV is accurate, we compare the battery current of 
simulation model and real vehicle using a real trajectory. The result is given in Figure 3. The results show that the battery 
current curve of simulation model is close to the one of real vehicle. 

Figure 3  The comparison between battery current of real vehicle and simulation model 

3. Car Following As a markovian Decision Process
In this paper, we consider the problem of CF trajectory planning for AEV. The goal of the planning is to minimize the 
electricity consumption and simultaneously guarantee the safety and effectiveness of CF. Driving speed and gap of the 
leader are collected real-time by V2V devices and/or sensors of following vehicle.  An illustration of the problem is 
available in Figure 4. The aim of CF trajectory planning is to decide the real-time acceleration of the follower.
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Figure 4  The CF problem in this paper

To tackle this problem, we propose to formulate the problem using markovian decision process (MDP), which is defined 
as , where  are the sets of states, action space, transition probability functions, reward 
functions, and a discount factor respectively. The definitions are given as follows:

State : The state of the CF problem is defined as a vector:

  (5)

where  is the state of charge of follower’s battery at time  are the distance, speed of the leader, 
and speed of the follower at time . The reason we choose  as a state variable is that the electricity consumption is 
impacted by the  of the battery.

Action : The action of the following vehicle is defined as its action. The acceleration is ranging from -3 to 3.
Reward function : Since the follower should follow with the leader with an appropriate distance 

while save the electricity consumption, both the distance and electricity consumption should be taken into account in 
modelling reward. The reward is defined as the sum cost of the distance reward and electricity consumption as follows:

  (6)

where  is a function that mapping into the distance reward.  is the RMB cost for electricity.  is 
defined as:

  (7)

The distance reward function given in Eq (7) means that when the distance between leader and follower is below the 
safety distance the function outputs a low reward value. Moreover, the function also outputs a low reward value if the 
follower are too far away from the leader. 

State transition probability : It gives the probability of transiting to  given a action  
is taken in the current state . The transition of  in Eq (5) is determined by the EV simulation model given in section 
2.  of state in Eq (5) is computed by and  are determined by the future driving behaviour of the 
leader.

4. Trust Region Policy Optimization
The essence of DRL is to use deep learning techniques to search an optimal action policy for MDP. In this paper, we use a 
specific policy gradient method — Trust Region Policy Optimization (TRPO) to obtain CF policies. We introduce the basic 
principle of TRPO in this section.

In RL, we optimize a policy  for the maximum expected discounted rewards:
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  (8)

The policy gradient (PG) computes the steepest ascent direction for the rewards and update the policy towards that 
direction.
  (9)

A problem with PG is that improper learning rate  will cause vanishing or exploding gradient. Moreover,  is 
sensitive to noise or function approximation error. In order to make the optimization more robust, an advantage function is 
defined:

  (10)

The advantage function  describes how good the action  is compared to the average of all the action. Using the 
advantage function, the loss function of policy gradient becomes

  (11)

In order to solve the problem using Monte Carlo simulation, the importance sampling method is applied to transform the 
loss function into the following form:

  (12)

It is suggested that by maximize the following loss function, we are guaranteed to improve the policy:

  (13)

where  is KL divergence. The detail about the mathematical derivation of TRPO can be found in (Schulman et.al, 
2015).        

TRPO can be implemented via Actor-Crtic architecture, the advantage value  can be estimated by the critic when 
training actor’s parameters . Both actor and critic can be parameterized by neural networks using parameters  and . The 
critic parameters  is learnt using the gradients from the TD error signal:

  (14)

The advantage function  is estimated by . The algorithm for TRPO based CF is summarized 
in Algorithm 1.

Algorithm 1 Framework of TRPO for CF
1.Randomly initialize critic and actor network with parameters  and ;
2.For episode = 1 to m do

3. Receive initial observation state ;

4. For t = 1 to time length of following T do
5. Select action  according to the current actor;
6. Execute action  and observe reward , new state  using simulation EV model;    
7. Update actor parameters  by maximizing the loss in (13);
8. Update critic parameters  by minimizing the loss in (14);
9. end for
10. end for

5. Experimental Results
In this section, we present the quantitative and qualitative experiment results on following a vehicle driving with 
standard cycle NEDC. Their initial distance is 2m. The actor and the critic of the agent are composed of neural networks.  
Specifically, the actor  is expressed by:

 (15)

where relu, tanh and softplus are nonlinear activations.  and  are the parameters for hidden 
layers of actor.  and  are the parameters for mean value of action.  and  are 
the parameters for variance of action. The acceleration of the vehicle is sampled from Gaussian distribution . The 
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critic  is expressed by:
  (16)

where relu and linear are nonlinear activations.  and  are the parameters for hidden layers of 
critic.  and  are the parameters for value function estimation of critic. The actor  and critic are built 
upon Tensorflow (https://www.tensorflow.org/).

The learning process of TRPO on CF is given in Figure 5. The agent achieves progressively high reward. It is observed 
that the agent is learnt to drive far behind the leader at the beginning because the electricity cost is very low if the vehicle 
drives very slow. Then the distance reward  motivates the agent to drive behind the leader closely, the average 
distance goes down and the RMB cost of electricity plateau at 1.3 ￥.

Figure 5  The learning process of TRPO on CF

We compare the TRPO based CF model with several conventional CF models including Krauß, SmartSK, and Wiedemann models. 
Those models are well built-in SUMO- an open source traffic simulation software. The software is highly flexible, well documented 
and supports set the speed limits for each lane using its API--the Traffic Control Interface (TraCI) package. In SUMO, we set the 
leader driving with the speed from NEDC driving cycle, and the followers with different car following models are driving behind the 
leader. The initial distance between leader and follower is set to 2m. The minimum gap between leader and follower is set to 0.1m. 
The initial SOC of the simulated Roewe E50 is set to 0.85. The final SOC and RMB cost of the electricity consumption of different 
models are given in Table 2. It is obvious that the DRL based TRPO model outperforms other conventional CF models. The reason is 
that the DRL based CF model utilizes neural networks to model the CF behaviour, which has more powerful capability than model with 
simple mathematical equation. Moreover, the DRL based CF is trained by a reward-driven manner, thus can achieve optimal electricity 
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consumption and following distance using the reward signal given in Eq (6).  
Table 2 The final SOC and RMB cost of different CF models

Method Final_SOC RMB cost
TRPO 0.7972 1.3261
Krauss 0.7833 1.6746

SmartSK 0.7210 3.2341
Wiedemann 0.7892 1.5296

Figure 6  The speed curves of follower (TRPO), leader (NEDC) and corresponding distance between them under two different cases

Figure 6 plots the speed curves of TRPO based follower and its distance behind the leader driving with NEDC driving 
cycle under two cases. From the plots, we can find that the TRPO based follower can follow the leader with a very low 
distance. In figure (b), the distance between the leader and follower is under 10m even the two vehicles are driving with 
speed above 30m/s. We can observe a 2s acceleration//deceleration duration of follower when its leader starts acceleration/
deceleration. The duration does not deteriorate the driving safety, the follower can precisely control its speed and maintain 
the distance behind leader above 0.1m. The results indicate that the DRL based CF model is very effective. It ensures 
that the high speed AVs can drive with a very small gap. We can apply the DRL based CF model to autonomous platoon 
control, which could improve the traffic capacity.  Moreover, it has been proved that the platoon with high speed and low 
distance can significantly reduce the air drag force of each vehicle, therefore leads to reduction of fuel consumption (Liang 
et.al, 2015). The proposed DRL based CF model can be further applied to longitudinal control of the platoon.  

6. Conclusion And Future works
In this paper, we have investigated how to use DRL to CF problem of AEV with respect to electricity consumption and 
following distance. We build a energy consumption model of Roewe E50 using real-world data. The CF problem is 
formulated as a MDP, then it is solved by TRPO- a popular DRL framework. Lastly, we compared our DRL based CF 
approach with conventional CF models in following standard driving cycle NEDC, which suggest that our model is better 
than traditional models in terms of electricity consumption and following distance.

The obtained results have assumed only two vehicles interact with each other. However, in reality, traffic is commonly 
a significant factor in longitudinal control since it will affect the possibilities to form CF pairs and the potential electricity 
savings. Therefore, it is of interest to extend the DRL based driving behaviour control to more complex traffic environment. 
Furthermore, it is believed that the air drag force will be significantly reduced in a platoon. The application of DRL on 
platoon control will be a valuable future direction. Moreover, the aerodynamic forces modelling for simulation of DRL 
based driving control is also very important, which could tell us the optimal vehicle distance to reduce fuel/electricity 
consumption.
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