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Abstract
Interstation travel speed is an important indicator of the running state of hybrid Bus Rapid Transit and passenger experience. Due to the 
influence of road traffic, traffic lights and other factors, the interstation travel speeds are often some kind of multi-peak and it is difficult 
to use a single distribution to model them. In this paper, a Gaussian mixture model charactizing the interstation travel speed of hybrid 
BRT under a Bayesian framework is established. The parameters of the model are inferred using the Reversible-Jump Markov Chain 
Monte Carlo approach (RJMCMC), including the number of model components and the weight, mean and variance of each component. 
Then the model is applied to Guangzhou BRT, a kind of hybrid BRT. From the results, it can be observed that the model can very 
effectively describe the heterogeneous speed data among different inter-stations, and provide richer information usually not available 
from the traditional models, and the model also produces an excellent fit to each multimodal speed distribution curve of the inter-
stations. The causes of different speed distribution can be identified through investigating the Internet map of GBRT, they are big road 
traffic and long traffic lights respectively, which always contribute to a main road crossing. So, the BRT lane should be elevated through 
the main road to decrease the complexity of the running state.
Keywords: bayesian, hybrid BRT, RJMCMC, interstation travel speed, gaussian mixture model

1. Introduction 
The travel speed is the main advantage of the Bus Rapid Transit (BRT) over ordinary buses, especially in the downtown 
area, but the speed of the hybrid BRT system may have some difference. Hybrid BRT is an improved form of BRT, which 
has facilities such as bus lanes, new public transport stations and intelligent monitoring and management systems, but is 
no longer isolated from ordinary bus lines (1). Ordinary buses are free to enter and exit the BRT system, passengers can 
transfer to the buses in station, private cars in the off-peak hours can also runs into some part of the BRT lanes, which 
enhances the efficiency of the city's overall bus system. But these changes will also have great impact on the interstation 
travel speed of hybrid BRT, and the distribution of the travel speed will be more complexed. The interstation travel speed is 
an important indicator of the running state and efficiency of the BRT (2). It is also the main input data of BRT simulation. 
Therefore, it is necessary to model the speed and analyze the running state of hybrid BRT consequently.

The travel speed was usually modeled with a normal or lognormal distribution, or a Gaussian mixture distribution with 
a fixed K value (3). However, the travel speed of hybrid BRT is affected by more factors, including road traffic, traffic 
lights, and other factors. Therefore, the distribution of travel speed varies largely between stations, often showing multi-
peak phenomenon; and the influence factors of different interstation are not the same, accordingly the distributions must 
be different, so it is difficult to use the above model to describe them. Therefore, constructing a mathematical model 
describing the multi-peak travel speed of interstation of hybrid BRT is very necessary.

In addition to the single mathematical model mentioned above, other scholars had proposed different types of 
distribution to model the non-normality of the sampled travel speed. Dey and others showed that the speed data could 
follow a unimodal or a bimodal curve depending on the variation of speed for different categories of vehicles (4). A similar 
approach taken by Ko and Guendsler characterized the congestion based on the two mixtures of speed distribution. They 
assumed that the speed distribution over a given time had a form of mixed distribution, one for congested and the other for 
uncongested flow (5). Some researchers had adopted Gaussian mixture models to cluster transport-related observations into 
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groups and discovered the existence of multi-regime states. Park et al. employed the model to account for heterogeneity in 
speeds based on actual data collected from an existing highway segment. Jun utilized the model to characterize the severity 
and variability of congestion on certain interstate roadway systems (6). Corey et al. (2011) used a Gaussian mixture 
model to identify the sensitivity errors of inductive loop detectors (7). More recently, Lao et al. also utilized a Gaussian 
mixture model to estimate traffic speeds and classify vehicle volumes using measurements from single-loop detectors (8). 
However, Park et al. did not fully incorporate the parameter (i.e. the number of components) into the Bayesian framework 
to infer other unknown parameters. The Bayesian framework assumes that the number of Gaussian mixture models and 
the parameters of each component to be random variables and to have their own certain prior distribution (9). And the 
posterior distribution of these parameters needs to be estimated. The commonly used parameter estimation method was the 
RJMCMC method (10), such as Lee, which used this method to determine the component number of the Gaussian mixture 
model of the subway passenger's travel time data and the parameters of each component, and then determined the whole 
Gaussian mixture model (11).

bus station-reporting data refers to when the bus stops at the station and open the door, it reports the station to the 
passengers and reminds the passengers to get off; when the bus doors closed, it reminds other passengers the next station, 
so they can be ready for getting off. Bus station-reporting data is generated during the process. From the data, the travel 
time between neighbored stations can be extracted, then the interstation travel speed can be computed. In this paper, the 
interstation travel speed is calculated using the station-reporting data of a hybrid BRT. Then, within a Bayesian framework, 
the Gaussian mixture model is used to model the interstation travel speed, and the number of model components is 
estimated using the RJMCMC method, so do the parameters of each component. Finally, combined with the impacts of 
road traffic, traffic lights, and other factors, the causes of the formation of the models can be determined. The results can 
be used as input to the BRT simulation system, so that the simulation is closer to the real system. And the main factors that 
have impact on the running state of hybrid BRT can be determined, this provides a basis for BRT optimization.

2. Modelling the interstation travel speed
Due to the influence of traffic lights, road traffic and other factors, the interstation speed distribution of hybrid BRT usually 
presents a multimodal phenomenon. The Gaussian mixture model can describe non-single normal samples, capture the 
heterogeneity of multiphase data more completely, and effectively fit the multimodal distribution. Therefore, this paper 
adopts a Gaussian mixture model to describe the interstation travel speed of hybrid BRT, and assumes the unknown 
parameters as random variables, and describes the speed model under the Bayesian framework.
2.1 The Gaussian mixture model
A Gaussian mixture model is a simple weighted sum of K Gaussian densities, each representing a component that 
corresponds to a speed distribution in the proposed model. For any adjacent stations, the Gaussian mixture model of the 
travel speed is defined as Eq. (1)

  (1)

where  is a target random variable representing the i th travel speed extracted from bus station-reporting data, ( )|p is 
a composite probability density of travel speeds, K is the component number in the model, is a vector of 

speed mean of each component, and is a vector of speed variances of the components, jw  is a weight of j
th component,  , and ( ),N ⋅ ⋅  is a one-dimensional Gaussian density function.

In the above model, the density distribution which the observed value iy  belongs to is unknown. Define the latent 
variable iz  as the density distribution label to which the observed value iy  belongs, and the probability that the latent 
variable iz  belongs to the j th  density distribution is as Eq. (2)
 ( ) , 1, ,i jp z j w j K= = =   (2)

Then a complete Gaussian mixture model of the interstation travel speed is parameterized by the number of the 
component and the mean, variance and weight for each component. However, the component number of the models and 
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the parameters of each component are often variable among inter-stations. These differences are caused by the factors that 
have impact on the speed (such as road traffic lights). To model the travel speed better, this paper introduces the Bayesian 
framework, and uses the concept of hyper parameters to express the potential difference characteristics of the inter-station 
travel speed.
2.2 Travel speed model in Bayesian framework
Under the Bayesian framework, the unknown parameters in the Gaussian mixture model are assumed to be random 
variables and to have their own certain prior distribution, and the posterior distribution of these parameters needs to be 
estimated. Regarding the conjugate priors of the parameters, the component number in the model was assumed to follow 
a Poisson distribution, the weight parameter was assumed to follow a symmetric Dirichlet distribution, the mean of travel 
speed for each density distribution was assumed to be normally distributed, the variance in travel speeds for each density 
distribution was assumed to follow an inverse Gamma distribution. All these prior distribution functions also involved 
additional parameters, which are referred to ‘hyperparameter’. Eqs. (3)–(6) represent functional expressions for the chosen 
priors.

 ( ) ( )exp
!

k

p K k
k

λ λ−
= =  (3)

 ( ), ,D δ δw �   (4)

 ( )1, , 1, ,j N j Kµ ξ κ − =�   (5)

 ( ), , 1, ,j j Kσ α βΓ =�   (6)

Where λ is a hyperparameter to characterize the prior distribution of the number of the distributions, D represents the 
Dirichlet distribution with a hyperparameter δ , ξ  and 1κ −  are the prior mean and variance of the prior distribution of the 
mean of the density distribution respectively, and ( ),Γ ⋅ ⋅ represents a Gamma distribution, and hyperparameters α and β
are shape and rate (i.e. 1/scale) parameters respectively.

The hyperparameters κ and β  are defined as random parameters, as Eqs (7)-(8), otherwise if they are set to fixed values, 
the estimated number of density distributions will change with them, this will result in different values of κ and β for the 
travel speeds of different adjacent stations.

 ( ),e fκ Γ�  (7)

 ( ),g hβ Γ�  (8)

where the second-level hyperparameters e , g and f ,  represent the shape and rate of a Gamma density, respectively.
According to the Bayesian theorem, the posterior distribution of all random variables can be defined as

 (9)

Where ( )1, , Ny y ′=y  and ( )1, , zNz ′=z   are observations and latent variable tags, Respectively, N is the number of 
the observations. According to the conditions of the parameters independent assumptions, the posterior distribution can be 
simplified into one-level Bayesian model(second row of Eq.(9)), and further, can be simplified into the two-level Bayesian 
model in the third row of Eq.(9). In the next step, we need to solve the joint probability distribution of all the random 
variables in Eq. (9).

3. parameter estimation
After the interstation travel speed of hybrid BRT modelled, the component number and the parameters of each component 
need to be inferred, this inference process is also a process of solving the speed model. Because the model is a multimodal 
probability density distribution model, we use the outer Gibbs sampling and RJMCMC (Reversible-jump Markov chain 
Monte Carlo) method to solve it.
3.1 Gibbs sampler procedure
To sample from a joint distribution, a Gibbs sampler repeatedly takes a draw of each random variable in turn, with all 
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other variables fixed at the previous draws. It should be noted that the dimension of the first three parameter subsets vary 
according to the last parameter K. This was the main reason a reversible jump MCMC sampler was employed, the details 
of which will be described in the next subsection. The outer Gibbs sampler for solving the proposed problem can be 
summarized as follows.

1) to update the distribution shares w .
2) to update the mean and variance  of each distribution.
3) to update the latent allocation variable z  for each travel speed.
4) to update the hyperparameters κ and β .
5) to update the number of speed components K .
According to the conjugacy, all the conditional distribution in the first four steps can be achieved by simplifying the Eq. (9) 

with all other parameters fixed at constants.
The full conditional distribution for w parameter was a Dirichlet distribution with hyperparameters increased by the 

estimated number of observations (i.e. the number of travel speed observations) for each distribution. 

 ( )1| , , Kall other parameters D n nδ δ  + +w �   (10)

The full conditional distribution of the mean of the speed density distribution is given in Eq. (11). To avoid the problem 
of label exchange between the distributions, we follow the order principle ( 1 2 Kµ µ µ< < < ). during the procedure of 
speed mean sampling, once the order principle is violated, the sampling results are rejected.

 { } ( )
2

1| 2
2| ,i

j i
i z j

j j j
j j

y
all other parameters N n

n

σ κξ
µ σ κ

σ κ

−

−= −
−

 +
 

  + 
+ 

 

∑
�  (11)

The full conditional distribution of speed variance of the density distribution is given in Eq. (12).

 ( )
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The latent variable of the observed speed iy is sampled using Eq. (13).The estimated number of observed values is 
updated accordingly.

 ( )
( )2

2| exp
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i jj
i

j j

yw
p z j all other parameters

µ

σ σ

 − =   ∝ − 
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 (13)

The full conditional probability distribution of the hyperparameters κ and β  are given in Eq. (14)-(15).

 ( )21 1| ,
2 2 j

j
all other parameters e K fκ µ ξ

 
  Γ + + − 

 
∑�  (14)

 2| , j
j

all other parameters g K hβ α σ − 
  Γ + + 

 
∑�  (15)

In the fifth step, the RJMCMC method is used to realize the reversible jump of each parameter in different dimensions 
based on the four different move types of split, combine, birth and death, and to infer the unknown number of the 
components of the model.
3.2 Estimation of the number of speed component
Based on the dimension equilibrium condition, the RJMCMC solves the mixture model under unknown dimension by 
exploring in different dimension spaces. The core of the RJMCMC algorithm is the accepted probability of a proposed 
move. Green (1995) suggested the following criterion [Eq. (16)] to move from the current state  to a 
higher dimensional state , as Eq. (16)-(18). 
 ( ) { }, min 1,ma x x A′ =  (16)

 ( ) ( ) ( ) ( )likelihood ratio prior ratio proposal ratio JacobianA = × × ×  (17)
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( )mr x is the proposal probability of selecting the movement type, m in the current speed distribution x , u is the 
continuous variable sample, and ( )q u is the proposal probability density distribution of u .

In each iteration, split or combine, birth, or death is selected according to the proposal probabilities of the movement 
type. Kb is the proposal probability of splitting (or birth) when the current number of the speed density distributions is K , 

Kd is the proposal probability of the corresponding combine (or death), as in Eq. (19). maxK is the maximum number of the 
speed distributions.

  (19)

In case of the split move, the j ∗ distribution is randomly selected to be split. The weight, the mean and the variance of 
the speed of the distribution j ∗  are split into two new distributions 1j and 2j , as in Eq.(20). And the observed values 
belonging to the distribution j ∗ are redistributed to the new distribution 1j or using the Monte Carlo method, see 
Eq.(13). However, once the principle of order ( 1 1 2 1j j j jµ µ µ µ∗− ∗+< < < ) is violated, then the split will be rejected.
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In case of combine move, the adjacent distributions 1j and 2j are merged into the distribution j ∗ , as in Eq.(21).
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Then the acceptance probability of a split move can be defined as the minimum value between 1 and the result of Eq. (22). 
The probability of acceptance for a combine move is { }min 1, .

 

( )
{ }

( )
{ }

( )
{ }

( )
( ) ( )

( )

( ) ( ) ( ){ }

( )

1 2

1 2

2 2
1 1 2 2

| 1 | 2

2

|

1 1
1 2

1

2 2 2

1 2

1

| , | ,
Likelihood ratio=

| ,

1
Prior ratio= 1

,

1exp
2 2

i i

i

j j

j j

i j j i j j
i z j i z j

i j j
i z j

n n
j j
n n

j

j j j

j

N y N y

N y

w wp K
K

p K w B K

δ δ

δ

α

µ σ µ σ

µ σ

δ δ

κ κ µ ξ µ ξ µ ξ
π

σβ
α

= =

∗ ∗
= ∗

− + − +

− + +
∗

∗

  
    
  

+
× + ×

 × − − + − − −  

×
Γ

∏ ∏

∏

( ){ }

( ) ( ) ( ){ }

( ) ( )

12 2
2 2 2 2

1 22

11
2,2 1 2,2 2 1,1 3

2 2
1 2 1 2

2 2
2 2 3 3

exp

Proposal ratio=

Jacobian=
1 1

j
j j j

j

K

K alloc

j j j j j

j

d g u g u g u
b P

w

u u u u

α
σ

β σ σ σ
σ

µ µ σ σ

σ

− −

− − −
∗

∗

−+

∗

∗

 
− + −  

 

−

− −

 (22)

Where K is the number of the speed distributions before splitting, 1jn and 2jn are the number of observations assigned 
to the speed distributions 1j and 2j , ( ),B ⋅ ⋅ is the beta function, ( )Γ ⋅ is the gamma function, allocP is the probability of 
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occurrence of this particular allocation result, ( ),p qg ⋅ is the density function of the beta function with parameters p and q .
When a birth move happens, a new speed distribution is generated, as Eq. (23), and the weight of all speed distributions 

is normalized.

 ( ) ( ) ( )11, , , , ,j j jw beta K Nµ ξ κ σ α β− ∗
∗ ∗ Γ� � �  (23)

The probability of acceptance for a birth move is { }min 1, A , see Eq.(24). The probability of acceptance for death 
move is { }1min 1, A− . K is the number of speed distributions before the birth move; 0K is the number of empty speed 
distributions. 

 

( )
( ) ( ) ( ) ( )

( )

( )

1

11
1,

0
1

Likelihood ratio=1

1
Prior ratio= 1 1

,

Proposal ratio=

Jacobian= 1

N K Kj
j

K
K j

K
K

j

wp K
K w

p K B K
d g w
b K

w

δ
δ

δ δ

−
+ −∗

∗

−+
∗

−

∗

+
× + × −

−

 (24)

3.3 Description of the running state of hybrid BRT
The model above provide a method for descript the running state of hybrid BRT. Road traffic conditions are usually based 
on vehicle speed, the road is simply divided into smooth, slow, crowded, serious congestion and other states. BRT is the 
same. This simple state description can not effectively describe the speed distribution, the information provided is also 
very small. The Gaussian mixture model of interstation travel speed provides a new opportunity to describe the hybrid BRT 
running state. Each of the distributions of the model is treated as a sub-state, and the result of the whole model is the fusion 
of all sub-states, representing the interstation running state of the BRT. As the model provides a wealth of information, 
including the number of sub-states, the mean, variance and weight of each sub-state, etc., where the bigger number of sub-
state, the more complex running state. So a comparative analysis can be performed between the results of different models 
and the corresponding interstation physical environment, and the causes leading to complex traffic conditions can be 
identified, this provide a base for optimizing hybrid BRT. 

4. calibration and validation of the hyperparameters 
The proposed model belongs to the category of unsupervised machine learning technologies that require no calibration. 
The calibration and validation here means the determination of hyperparameters that was included in the model to 
infer the original parameters for speed distributions within a Bayesian framework. The objective function of the model 
hyperparameter calibration is defined as the maximizing likelihood ratio of the Gaussian mixture model, as in Equation 25.

  (25)

Where is the objective function to be maximized, is a vector of hyperparameters, ( ), , , , , , ,e f g hλ δ ξ α=è , s is a 
link between neighbored stations of the mixed BRT, sN is the number of the links, sρ is the weight of s .

Since ( )z ⋅  was not a closed-form function, it could be evaluated by simulation. Furthermore, the function’s 
mathematical properties such as continuity, differentiability, and concavity were totally unknown. It was thus impossible 
to employ a rigorous optimization algorithm like Newton–Raphson. The only way to optimize the objective function was 
to use metaheuristics. A particle-swarm optimization algorithm was the best fit for solving the above problem, since that 
algorithm is known to be good at optimizing a non-convex objective function with continuous variables.

The model calibration is done using the particle swarm optimization algorithm, the steps as follows:
1) to generate n particles, each particle randomly generates the initial solution,
2) to calculate the fitness function ( )iz θ  ( 1, ,i n=  ) of the current solution iθ  of each particle, as Eq. (26),
3) to obtain the optimal solution experienced by each particle, denoted as piθ , and the optimal solution experienced by 

all particles, denoted as gθ ,
4) to update current solution of the particles according to Eq. (26), 
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5) return to step 2 until the iteration finished.

  (26)

Where  and  are the solution and corresponding speed of the particle i respectively, 1r and 2r  are random numbers 
with domain 0-1.

5. Case study
The case study is applied to Guangzhou Bus Rapid Transit (GBRT), a kind of hybrid BRT. Its  corridor runs along the 
center line of Zhongshan Avenue, with a length of 23 kilometers. There are 26 stations, numbered 1 to 26, the first station 
is Tianhe Sports Center, the center of the downtown, the 26th  is Xiayuan, located in the outskirts of the city (for details, 
see Appendix 1). Totally there are 31 bus lines, named from B1 to B31 respectively, but only B1 runs from the start BRT 
station to the end one, other bus lines only enter the BRT corridor in necessary, when they left the corridor, they are just 
ordinary bus lines. So, the ordinary bus lines do not separate from GBRT, and passengers can transfer in station. For this 
reason, GBRT is double efficient than other BRTs. 

The station-reporting data of GBRT were collected at 7th Dec, 2015, and from them there are 65 thousand of the travel 
speed data of the inter-station (from Tianhe Sports Center to Xiayuan, totally 25 inter-stations,named by neighbored station 
numbers, as Figure 1) were computed (for detailed sample data, see Appendix 2) .
5.1 Calibration and validation results
In the calibration process of the interstation travel speed model, the number of particles is set to 10, the number of 
iterations is set to 80 times. The hyperparameter λ and δ set to 1, ξ is set to the mean of the travel speed of corresponding 
inter-station, the calibration results as Table 1.

Table 1 calibration values for hyperparameters.

λ δ ξ e f α g h

1 1 Midpoint value of R 1.71 5.07 2.30 2.75 8.37
*R  is the range of travel speeds data for each inter-station.

The RJMCMC method is applied to infer the number of speed distributions and the weight, mean and variance of each 
speed distribution, see Appendix 3. In the process, the adopted Gibbs sampler took random draws from the posterior 
distribution. After conducting 50,000 Gibbs iterations, the former 5000 replications were discarded as burn-in data, and the 
remaining draws were saved to approximate the joint posterior distribution of the parameters. Where the estimated number 
of the speed distributions was set as the number with the maximum marginal posterior probability, and a distribution’s 
estimated travel speed was set as the mean of the marginal posterior distribution of the mean travel speed for the 
distribution. The estimated variance of travel speeds also denoted the mean of the posterior distribution for the variance in 
travel speeds of each distribution.

The results showed that the number of the speed distributions was different among the different inter-stations, it ranged 
from 1 to 6, and each number accounted for 8%, 44%, 16%, 16%, 12% and 4% of all the numbers, as in Figure 2. To 
illustrate the result, six estimated model of inter-station travel speed and corresponding histograms of observed speed 
samples were draw in Figure 1, their component number are from 1 to 6, respectively (for all results, see Appendix 3) . 
It could be found that the estimated results of the Bayesian prediction can be well fitted to the observed speed samples. 
It is difficult to visually judge the component number and the weight, speed mean and variance of each component 
according to the speed histogram, but in the estimated results they are vary clear, indicating that the proposed model 
is effective and necessary.
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(a) 1K =  Inter-station 16-17 (b) 2K =  Inter-station 6-7 (c) 3K =  Inter-station 3-4

(d) 4K =  Inter-station 1-2 (e) 5K =  Inter-station 10-11 (f) 6K =  Inter-station 9-10

Figure 1. Comparison of model curve of different interstation and corresponding histograms of speed samples 

5.2 Running states of GBRT
The modelling results shed a light on the running state of GBRT. If a component of Gaussian mixture model represents an 
interstation running state, then the model represents the mixture results of all the interstation running states. Figure 2 is the 
K values of all 25 interstations, the horizontal axis is the sequence of stations, the first station is Tianhe Sports Center, the 
26th station is Xiayuan, and the 4th, 6th, 9th, 11th stations are Normal Univ & Jinan Univ, Shangshe, Tangdong, Chebei 
station respectively. Figure 3 is the posterior mean of the expected speed of the running states of all 25 interstations.

It can be observed from Figure 2, the K values of the models in urban area are higher than those in suburban. As the BRT 
part in suburban basically has no external disturbance, so we can conclude that the number of the running state of GBRT 
itself is 2. This conclusion can also be obtained from the urban section of GBRT, such as the inter-station of 6-7, from the 
GOOGLE map it can be seen, there are no road intersection and traffic lights, traffic is also not much, that is, there is no 
factor to interfere with BRT operation, so its K value is 2.
Also in the Figure 2, there are two sections with K value 5 or more. But combined with the GOOGLE map it can be 
found that the reasons are different. In the first part, there is a highway entrances between inter-station 4-5, which is a 
highway through the city center, and station 1 to 4 are work destinations, so the highway brings a lot of traffic flow, which 
disturbs GBRT a lot. The second part 9-11 crosses with main road (Chebei Road) plainly, this road is a north-south traffic 
arteries, connecting a fast road nearby, which brings a lot of traffic flow into the downtown, they disturb GBRT a lot, and 
the road has many straight traffic flow, so the buses of GBRT must wait for a long red time. so, the K value of inter-station 
9-10, a maximum of 6, is the superimposed effect of the two factors.

On the other hand, the bigger K value of the interstation speed model means the more complex of the running state of 
the inter-station, this conclusion can be proved in Figure 3, it can be observed that posterior means of the means of the 
speeds are very scattered for those models with K value more than 4.

How to reduce the K value, that is, to reduce the complexity of the operating state of BRT? We can also find answer 
from GBRT. Comparing inter-station 10-11 and 7-8 (with K value 4) In the network map, they have similar environment. 
There is also a main road (Keyun Road) crossing with inter-station 7-8, a more important road than Chebei Road, but it 
passes through the inter-station below, thus the direct traffic flow interference is avoided, which greatly reduced the waiting 
time of GBRT buses for traffic lights. Inter-station 3-4 is in a similar situation, but the solution is to raise the BRT lane 
through the intersection, thus avoiding the disturbance of traffic lights and other directions of traffic.

Therefore, the main road traffic flow and traffic lights are the main factors affecting the BRT running state, the solution 
is to elevate BRT lane, or let other main road cross through the BRT lane below, if the traffic flow of the main road is 
relatively large.
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Figure 2.  K  values of the interstation travel speed models.

Figure 3. Estimated speed of the interstation travel states of GBRT

Conclusions
Hybrid BRT greatly improves the operational efficiency of urban public transport, but it is also disturbed by urban road 
traffic. Due to road traffic, traffic lights and other factors, the distribution and changes of its interstation travel speed 
are very complex. In this paper, a Gaussian mixture model describing the interstation travel speed of hybrid BRT under 
Bayesian framework is established. The component number of of the model and the weight, mean and variance of each 
component are deduced by RJMCMC method. The model is applied to the Guangzhou BRT, and the travel speed of 25 
inter-stations is modeled to describe their running states. It can be observed that the model can very effectively describe 
the heterogeneous speed data among different inter-stations, and provide richer information usually not available from the 
traditional models. The causes of different speed distribution can also be identified, this provides a base for optimizing 
hybrid BRT.

Firstly, the component number of different speed model varied greatly, the value is from 1 to 6, this implies the proposed 
model is necessary and appropriate.

Second, the number of the running state is usually 2 for GBRT itself, but as the influencing factors increase, the number 
increases consequently, until to 6.

Third, the main road will lead to many traffic and long time to wait for the red light, they will have a serious impact on 
the running state if it crosses with the BRT. The way to reduce these effects is to elevate the BRT lane through the main 
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road, or to sink the road through the BRT lane.

Acknowledgements
The authors acknowledge that this paper was prepared based on  Science and technology planning project of Guangdong 
province of China in 2017 (No. 2017B010111007),the National Natural Science 16 Foundation of China (No. 41271181).

Appendix
Appendix 1 the stations of GBRT (the station name is mainly named in Chinese pinyin)

Station ID Station Name Station ID Station Name Station ID Station Name

1 Tianhe Sports 
Center 10 Tianlang 

mingju 19 Wuchong

2 Shipai Qiao 11 Chebei 20 Huangpu Coach Station
3 Gangding 12 Dongpuzhen 21 Shuanggang

4 Normal Univ 
& Jinan Univ 13 Huangcun 22 Shapu

5 Huajing New 
Town 14 Zhucun 23 Nanhai Temple

6 Shangshe 15 Lianxi 24 Miaotou
7 Xueyuan 16 Maogang 25 Nanwan
8 Xueyuan 17 Zhujiangcun 26 Xiayuan
9 Tangdong 18 Xiasha

Appendix 2 The samples of the station-reporting data( the data is collected from bus801189, line B1)

Line name Bus number Station Reporting time Tags of in/out
Line B1 801189 Tianhe Sports Center 2015-12-7 11:00:20 Out
Line B1 801189 Shipai Qiao 2015-12-7 11:02:27 In
Line B1 801189 Shipai Qiao 2015-12-7 11:02:40 Out
Line B1 801189 Gangding 2015-12-7 11:06:13 In
Line B1 801189 Gangding 2015-12-7 11:06:55 Out
Line B1 801189 Normal Univ & Jinan Univ 2015-12-7 11:08:43 In
Line B1 801189 Normal Univ & Jinan Univ 2015-12-7 11:09:21 Out
Line B1 801189 Huajing New Town 2015-12-7 11:11:01 In
Line B1 801189 Huajing New Town 2015-12-7 11:11:48 Out
Line B1 801189 Shangshe 2015-12-7 11:12:56 In
Line B1 801189 Shangshe 2015-12-7 11:13:20 Out
Line B1 801189 Xueyuan 2015-12-7 11:14:08 In
Line B1 801189 Xueyuan 2015-12-7 11:14:31 Out
Line B1 801189 Tangxiacun 2015-12-7 11:16:59 In
Line B1 801189 Tangxiacun 2015-12-7 11:17:29 Out
Line B1 801189 Tangdong 2015-12-7 11:18:06 In
Line B1 801189 Tangdong 2015-12-7 11:18:29 Out
Line B1 801189 Tianlangmingju 2015-12-7 11:19:05 In
Line B1 801189 Tianlangmingju 2015-12-7 11:19:30 Out
Line B1 801189 Chebei 2015-12-7 11:20:15 In
Line B1 801189 Chebei 2015-12-7 11:20:44 Out
Line B1 801189 Dongpuzhen 2015-12-7 11:22:11 In
Line B1 801189 Dongpuzhen 2015-12-7 11:22:40 Out
Line B1 801189 Huangcun 2015-12-7 11:24:10 In
Line B1 801189 Huangcun 2015-12-7 11:24:33 Out
Line B1 801189 Zhucun 2015-12-7 11:26:26 In
Line B1 801189 Zhucun 2015-12-7 11:26:58 Out
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Line name Bus number Station Reporting time Tags of in/out
Line B1 801189 Lianxi 2015-12-7 11:28:37 In
Line B1 801189 Lianxi 2015-12-7 11:29:03 Out
Line B1 801189 Maogang 2015-12-7 11:29:53 In
Line B1 801189 Maogang 2015-12-7 11:30:18 Out
Line B1 801189 Zhujiangcun 2015-12-7 11:32:06 In
Line B1 801189 Zhujiangcun 2015-12-7 11:32:40 Out
Line B1 801189 Xiasha 2015-12-7 11:34:48 In
Line B1 801189 Xiasha 2015-12-7 11:35:18 Out
Line B1 801189 Wuchong 2015-12-7 11:38:18 In
Line B1 801189 Wuchong 2015-12-7 11:39:01 Out
Line B1 801189 Huangpu Coach Station 2015-12-7 12:17:10 In
Line B1 801189 Huangpu Coach Station 2015-12-7 12:17:22 Out
Line B1 801189 Shuanggang 2015-12-7 12:21:59 In
Line B1 801189 Shuanggang 2015-12-7 12:22:11 Out
Line B1 801189 Shapu 2015-12-7 12:23:20 In
Line B1 801189 Shapu 2015-12-7 12:23:32 Out
Line B1 801189 Nanhai Temple 2015-12-7 12:24:30 In
Line B1 801189 Nanhai Temple 2015-12-7 12:24:42 Out
Line B1 801189 Miaotou 2015-12-7 12:25:32 In
Line B1 801189 Miaotou 2015-12-7 12:25:44 Out
Line B1 801189 Nanwan 2015-12-7 12:27:14 In
Line B1 801189 Nanwan 2015-12-7 12:27:26 Out
Line B1 801189 Xiayuan 2015-12-7 12:28:07 In

* interstation travel speed=interstation lane length/ (in time of current station- out time of previous station)

Appendix 3 the Estimated Values of the Interstation Models of GBRT 

Interstation ID Component 
number

Parameter values of each component
Parameter 1 2 3 4 5 6

1-2 4
mean 3.2510 4.7673 7.5052 9.9131

-variance 0.6567 0.9772 1.0540 0.5350
weight 0.2844 0.4902 0.1824 0.0430

2-3 4
mean 3.3493 4.7628 7.4201 10.2722

-variance 0.5114 0.9080 1.0799 1.3580
weight 0.3122 0.3154 0.2699 0.1025

3-4 3
mean 3.3452 7.2113 9.9850

-variance 0.5656 1.3406 1.1374
weight 0.0463 0.7962 0.1575

4-5 5
mean 2.7049 3.5278 5.1521 9.6434 10.9758

-variance 0.3050 0.4935 0.7621 1.7421 1.1170
weight 0.1003 0.0508 0.0555 0.4741 0.3193

5-6 5
mean 2.7290 4.4130 6.3569 8.9291 10.9554

-variance 0.3795 0.7524 0.9311 0.9566 0.6042
weight 0.1575 0.4369 0.2276 0.1341 0.0440

6-7 2
mean 9.5269 13.5904

-variance 1.5936 0.6886
weight 0.9321 0.0679

7-8 4
mean 2.9951 5.0860 8.0131 11.4071

-variance 0.5521 1.1308 1.3667 0.6810
weight 0.1251 0.5669 0.2622 0.0458
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Interstation ID Component 
number

Parameter values of each component
Parameter 1 2 3 4 5 6

8-9 4
mean 5.4349 8.6181 12.0195 16.5638

-variance 0.7542 1.7467 1.5425 1.3547
weight 0.2134 0.4307 0.3363 0.0195

9-10 6
mean 4.2223 5.8194 8.2147 11.5758 14.4941 17.9123

variance 1.0963 0.8013 1.1026 1.3448 1.3659 1.1198
weight 0.0335 0.2247 0.1761 0.3588 0.1672 0.0397

10-11 5
mean 4.7181 6.0802 8.2034 12.5544 16.7726

-variance 1.2262 0.7513 1.1629 1.7347 1.5659
weight 0.0490 0.4864 0.1537 0.2621 0.0488

11-12 2
mean 6.8155 10.4426

-variance 1.1517 1.7286
weight 0.5239 0.4761

12-13 3
mean 3.6690 6.4205 9.5419

-variance 0.7143 1.3528 1.5391
weight 0.1366 0.5548 0.3086

13-14 2
mean 4.5022 7.9813

-variance 0.7519 2.1595
weight 0.3546 0.6454

14-15 2
mean 12.4571 14.5260

-variance 1.1832 1.4558
weight 0.6132 0.3868

15-16 3
mean 5.4279 7.2572 11.8534

-variance 0.5403 1.2110 1.9680
weight 0.2231 0.3172 0.4598

16-17 1
mean 13.4194

-variance 1.6674
weight 1.0000

17-18 2
mean 4.5750 9.0009

-variance 1.2792 2.2615
weight 0.4637 0.5363

18-19 2
mean 4.2578 8.1231

-variance 0.8942 1.4810
weight 0.6028 0.3972

19-20 2
mean 7.2892 12.8186

-variance 1.9520 1.5421
weight 0.6603 0.3397

20-21 2
mean 7.0950 11.6966

-variance 1.2979 1.7037
weight 0.6196 0.3804

21-22 2
mean 9.6947 15.6545

-variance 2.0056 1.2307
weight 0.8620 0.1380

22-23 2
mean 5.4889 9.9591

-variance 0.6875 1.6440
weight 0.1051 0.8949

23-24 1
mean 12.6109

-variance 2.4286
weight 1.0000

24-25 3
mean 5.1802 6.8780 11.6853

-variance 0.4809 1.0225 2.0139
weight 0.4070 0.3084 0.2846
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Interstation ID Component 
number

Parameter values of each component
Parameter 1 2 3 4 5 6

25-26 2
mean 4.8721 12.8046

-variance 1.1996 3.2176
weight 0.1105 0.8895
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