A Deep Reinforcement Learning Based Car Following Model for Electric Vehicle
摘要
关键词
全文:
PDF参考
Arulkumaran, K., Deisenroth, M. P., Brundage, M., & Bharath, A. A. (2017). A brief survey of deep reinforcement learning. arXiv preprint arXiv:1708.05866.
Chandler, R. E., Herman, R., & Montroll, E. W. (1958). Traffic dynamics: studies in car following. Operations research, 6(2), 165-184.
Chong, L., Abbas, M. M., Flintsch, A. M., & Higgs, B. (2013). A rule-based neural network approach to model driver naturalistic behavior in traffic. Transportation Research Part C: Emerging Technologies, 32, 207-223.
He, Z., Zheng, L., & Guan, W. (2015). A simple nonparametric car-following model driven by field data. Transportation Research Part B: Methodological, 80, 185-201.
Hongfei, J., Zhicai, J., & Anning, N. (2003, October). Develop a car-following model using data collected by" five-wheel system". In Intelligent Transportation Systems, 2003. Proceedings. 2003 IEEE (Vol. 1, pp. 346-351). IEEE.
Huang, X., Sun, J., & Sun, J. (2018). A car-following model considering asymmetric driving behavior based on long short-term memory neural networks. Transportation Research Part C: Emerging Technologies, 95, 346-362.
Khodayari, A., Ghaffari, A., Kazemi, R., & Braunstingl, R. (2012). A modified car-following model based on a neural network model of the human driver effects. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 42(6), 1440-1449.
Liang, K. Y., Mårtensson, J., & Johansson, K. H. (2016). Heavy-duty vehicle platoon formation for fuel efficiency. IEEE Transactions on Intelligent Transportation Systems, 17(4), 1051-1061.
Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., ... & Wierstra, D. (2015). Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971.
Maerivoet, S., & De Moor, B. (2005). Cellular automata models of road traffic. Physics reports, 419(1), 1-64.
Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., ... & Petersen, S. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529.
Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., ... & Kavukcuoglu, K. (2016, June). Asynchronous methods for deep reinforcement learning. In International conference on machine learning (pp. 1928-1937).
Onori, S., Serrao, L., & Rizzoni, G. (2016). Hybrid electric vehicles: Energy management strategies. Berlin Heidelberg: Springer.
Punzo, V., Ciuffo, B., & Montanino, M. (2012). Can results of car-following model calibration based on trajectory data be trusted?. Transportation Research Record, 2315(1), 11-24.
Salimans, T., Ho, J., Chen, X., Sidor, S., & Sutskever, I. (2017). Evolution strategies as a scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864.
Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural networks, 61, 85-117.
Schulman, J., Levine, S., Abbeel, P., Jordan, M., & Moritz, P. (2015, June). Trust region policy optimization. In International Conference on Machine Learning (pp. 1889-1897).
Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347.
Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., ... & Dieleman, S. (2016). Mastering the game of Go with deep neural networks and tree search. nature, 529(7587), 484.
Wang, X., Jiang, R., Li, L., Lin, Y., Zheng, X., & Wang, F. Y. (2018). Capturing car-following behaviors by deep learning. IEEE Transactions on Intelligent Transportation Systems, 19(3), 910-920.
Zheng, J., Suzuki, K., & Fujita, M. (2013). Car-following behavior with instantaneous driver–vehicle reaction delay: A neural-network-based methodology. Transportation research part C: emerging technologies, 36, 339-351.
Zhou, M., Qu, X., & Li, X. (2017). A recurrent neural network based microscopic car following model to predict traffic oscillation. Transportation research part C: emerging technologies, 84, 245-264.
DOI: https://doi.org/10.33142/sca.v2i5.813
Refbacks
- 当前没有refback。
版权所有(c){$ COPYRIGHTYEAR} {$ copyrightHolder}
此作品已接受知识共享署名-非商业性使用 4.0国际许可协议的许可。