临床医学与护理

VR与脑机接口技术在情绪识别与调节中的应用研究综述

王昕怡 (北方工业大学), 倪冰雪 (北方工业大学), 王青宇 (北方工业大学), 李争平 (北方工业大学)

摘要


文章研究了虚拟现实(BCI)与脑机接口(VR)在情绪识别与调节中的应用,构建了基于VR情绪诱发与EEG信号分析的闭环系统框架。文章系统阐述了从情绪模型、信号采集与预处理、特征提取到识别建模(涵盖传统机器学习与CNN、LSTM等深度学习模型)的全流程,分析了VR在提升情绪诱发生态效度与可控性方面的优势,并指出当前在信号质量、个体差异与模型泛化等方面的挑战,展望了多模态融合与轻量化便携设备等未来方向。

关键词


脑机接口;生理信号;情绪识别;虚拟现实;深度学习

全文:

PDF

参考


Houssein,Essam H,et al.Human Emotion Recognition from EEG-Based Brain–Computer Interface Using Machine Learning: A Comprehensive Review[J].Neural Computing and Applications,2022,34(15):12527.

Meuleman,Ben,David Rudrauf.Induction and Profiling of Strong Multi-Componential Emotions in Virtual Reality[J].IEEE Transactions on Affective Computing,2021(12):189.

Van den Broek E L.Ubiquitous emotion-aware computing[J].Personal and Ubiquitous Computing,2013,17(1):53.

潘澄.基于脑电情绪识别的运动想象脑机交互[D].浙江:浙江工业大学,2023.

Gupta K,Lazarevic J,Pai Y,et al.26th ACM Symposium on Virtual Reality Software and Technology[C].AffectivelyVR:Towards VR Personalized Emotion Recognition,2020.

Somarathna,Rukshani,et al.Virtual Reality for Emotion Elicitation – A Review[J].IEEE Transactions on Affective Computing,2023,14(4):26.

Kosonogov V,Hajiyeva G,Zyabreva I.a set of affective 360-degree panoramas: a psychophysiological study[J].Virtual Reality,2023,28(1):58-60.

BRADLEY MARGARET M,Bradley MM,Lang PJ.Measuring emotion: The self-assessment manikin and the semantic differential.Journal of Behavioral Therapy and Experimental[J].Psychiatry,1994(25):49-59.

Iyer A,Das S,Teotia R,et al.CNN and LSTM based ensemble learning for human emotion recognition using EEG recordings[J].Multimedia Tools and Applications,2022,82(4):4883-4896.

Izard Carroll E.Emotion theory and research: Highlights, unanswered questions, and emerging issues[J].Annual review of psychology,2009,60(1):58.

Shu Lin,Jinyan Xie,Mingyue Yang,et al.A review of emotion recognition using physiological signals[J].Sensors,2018,18(7):2074.

Koelstra S, Muhl C, Soleymani M, et al. DEAP: A Database for Emotion Analysis Using Physiological Signals[J]. IEEE Transactions on Affective Computing,2012,3(1):18-31.

Jirayucharoensak S, Pan-Ngum S, Israsena P. EEG-based Emotion Recognition using Deep Learning Network with Principal Component based Covariate Shift Adaptation[J]. Scientific Reports,2019,9(1):1-10.

Yang Y, Fairclough S, Zhai J. Multimodal Emotion Recognition Using EEG and ECG Signals Based on Deep Neural Networks[J]. IEEE Sensors Journal,2022,22(7):6993-7003.

徐宝国,宋爱国.基于小波包变换和聚类分析的脑电信号识别方法[J].仪器仪表学报,2009(1):25-28.

袁思念,李若薇,朱子孚,等.一种自适应的脑电信号噪声检测与去除方法[J].中国医疗器械杂志,2022,46(3):248-253.

李广鹏,刘波,李坤,等.一种基于机器学习的人脸情绪识别方法研究[J].计算机技术与发展,2019,29(5):27-31.

Mutawa A, Hassouneh A. Multimodal Real-Time patient emotion recognition system using facial expressions and brain EEG signals based on Machine learning and Log-Sync methods [J]. Biomedical Signal Processing and Control,2024(91):105942.

李锦瑶,杜肖兵,朱志亮,等.脑电情绪识别的深度学习研究综述[J].软件学报,2023,34(1):255-276.

黄磊.基于深度学习的脑电情绪识别关键技术研究[D].江苏:南京信息工程大学,2024.

Koelstra S ,Mühl C ,0001 S M , et al. DEAP: A Database for Emotion Analysis ;Using Physiological Signals [J]. IEEE Trans. Affective Computing,2012,3(1):18-31.

Ante T ,Mladen R . Emotion recognition based on EEG feature maps through deep learning network [J]. Engineering Science and Technology, an International Journal,2021,24(6):1442-1454.

Yaqing Z, Jinling C, Hong J T, et al. An Investigation of Deep Learning Models for EEG-Based Emotion Recognition [J]. Frontiers in Neuroscience,2020(14):622759.

Song, T., Zheng, W., Song, P.,Cui, Z.. EEG Emotion Recognition Using Dynamical Graph Convolutional Neural Networks [J].IEEE Transactions on Affective Computing,2020(11):532-541.

Xu, Y., Du, Y., Li, L., Lai, H., Zou, J., Zhou, T., Xiao, L., Liu, L., & , P.. AMDET: Attention Based Multiple Dimensions EEG Transformer for Emotion Recognition [J].IEEE Transactions on Affective Computing,2022(15):1067-1077.

Hang, W., Feng, W., Du, R., Liang, S., Chen, Y., Wang, Q., Liu, X.. Cross-Subject EEG Signal Recognition Using Deep Domain Adaptation Network [J]. IEEE Access,2019(7):128273-128282.

Pan, B., & Zheng, W.. Emotion Recognition Based on EEG Using Generative Adversarial Nets and Convolutional Neural Network [J]. Computational and Mathematical Methods in Medicine,2021(1):88-89.

Shen, X., LiuX., Hu, X., Zhang, D., Song, S.. Contrastive Learning of Subject-Invariant EEG Representations for Cross-Subject Emotion Recognition [J]. IEEE Transactions on Affective Computing,2021(14):2496-2511.




DOI: https://doi.org/10.33142/cmn.v3i2.18152

Refbacks

  • 当前没有refback。