工程建设

梯度变形加工改善低碳钢的力学性能

于晓娟, 邢万里, 常连波, 刘苗苗

摘要


文中研究了经过非均匀梯度预扭转和均匀预拉伸处理的低碳钢的组织结构和力学性能。实验结果表明,预扭转和预拉伸都能有效地提高低碳钢的强度,但在延性和韧性方面有所损失。然而,梯度预扭转处理的试样比预拉伸的试样具有更好的强度-延展性-韧性协同效应。这种综合力学性能的提高是由于梯度组织的形成,即位错密度随着距试样表面深度的减小而逐渐增大。本研究为提高金属材料的力学性能提供了一种梯度塑性变形的策略。

关键词


扭转变形;梯度结构;机械性能;低碳钢

全文:

PDF

参考


K. Lu, The future of metals [J]. Science,2010(328):319-320.

K. Lu, L. Lu, S. Suresh, Strengthening materials by engineering coherent internal boundaries at the nanoscale [J]. Science,2009(324):349-352.

R. Valiev, Nanostructuring of metals by severe plastic deformation for advanced properties [J]. Nat. Mater,2004(324):511-516.

J. H. Hollomon, Tensile deformation [J]. AIME Trans,1945(12):1-22.

K. Yamanaka, M. Mori, S. Kurosu, H. Matsumoto, A. Chiba, Ultrafine grain refinement of biomedical Co-29Cr-6Mo alloy during conventional hot-compression deformation. Metall [J]. Mater. Trans. A,2009(40):1980-1994.

Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Novel ultra-high straining process for bulk materials-development of the accumulative roll-bonding (ARB) process [J]. Acta Mater,1999(47):579-583.

N. Tsuji, R. Ueji, Y. Minamino, Nanoscale crystallographic analysis of ultra?ne grained IF steel fabricated by ARB process [J]. Scr. Mater,2002(47):69-76.

Y. Shi, M. Li, D. Guo, T. Ma, Z. Zhang, G. Zhang, X. Zhang, Tailoring grain size distribution for optimizing strength and ductility of multi-modal Zr [J]. Mater. Lett,2013(108):228-230.

R. Z. Valiev, T. G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement [J]. Prog. Mater. Sci,2006(51):881-981.

X. Zhang, A. Godfrey, X. Huang, N. Hansen, Q. Liu, Microstructure and strengthening mechanisms in cold-drawn pearlitic steel wire [J]. Acta Mater,2011(59):3422-3430.

R. Z. Valiev, I. V. Alexandrov, Y. T. Zhu, T. C. Lowe, Paradox of strength and ductility in metals processed by severe plastic deformation [J]. J. Mater. Res,2002(17):5-8.

X. Wu, M. Yang, F. Yuan, G. Wu, Y. Wei, X. Huang, Y. Zhu, Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proc. Natl. Acad. Sci,2015(112):14501-14505.

T.H. Fang, W.L. Li, N.R. Tao, K. Lu, Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper [J]. Science,2011(331):1587-1590.

X. Yang, X. Ma, J. Moering, H. Zhou, W. Wang, Y. Gong, J. Tao, Y. Zhu, X. Zhu, In?uence of gradient structure volume fraction on the mechanical properties of pure copper. Mater. Sci [J]. Eng. A,2015(645):280-285.

Y. Wei, Y. Li, L. Zhu, Y. Liu, X. Lei, G. Wang, Y. Wu, Z. Mi, J. Liu, H. Wang, H. Gao, Evading the strength-ductility trade-off dilemma in steel through gradient hierarchical nanotwins [J]. Nat. Commun,2014(5):67-69.

Y. M. Wang, E. Ma, M. W. Chen, Enhanced tensile ductility and toughness in nanostructured Cu [J]. Appl. Phys. Lett,2002(80):2395-2397.

R. O. Ritchie, The conflicts between strength and toughness [J]. Nat. Mater,2011(10):817.

M. E. Launey, R. O. Ritchie, On the Fracture Toughness of Advanced Materials [J]. Adv. Mater,2009(21):2103-2110.

E. O. Hall, The deformation and ageing of mild steel: III discussion of results [J]. Proc. Phys. Soc. B,1951(64):747-753.

A. Galiyev, R. Kaibyshev, G. Gottstein, Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60 [J]. Acta Mater,2001(49):1199-1207.

Z. Zeng, X. Li, D. Xu, L. Lu, H. Gao, T. Zhu, Gradient plasticity in gradient nano-grained metals [J]. Extreme Mech. Lett,2016(8):213-219.

K. Lu, Making strong nanomaterials ductile with gradients [J].Science,2014(345):1455-1456.

M. Yang, Y. Pan, F. Yuan, Y. Zhu, X. Wu, Back stress strengthening and strain hardening in gradient structure [J]. Mater. Res. Lett,2016(4):145-151.




DOI: https://doi.org/10.33142/ec.v6i9.9409

Refbacks

  • 当前没有refback。


版权所有(c){$ COPYRIGHTYEAR} {$ copyrightHolder}

Creative Commons License
此作品已接受知识共享署名-非商业性使用 4.0国际许可协议的许可。