工程施工技术

基于LBM的纤维多孔介质介尺度构建及其有效导热系数研究

黄亮, 阚安康, 陈照峰, 黑玉林

摘要


文中提出一种改进的三维纤维多孔介质介尺度生成方法和D3Q19LBM的整体数值方法,用于模拟其在真空下的传热过程。通过扫描电镜获得到改进的纤维介观结构参数,包括:核心生成概率、纤维长度、直径、方向角和重合率,建立了真空下有效导热系数计算模型,推导了D3Q19-BGK-LBM离散速度模型、分布函数、分布函数的演化方程及边界条件。深研了纤维直径、长度、方向角等因素对纤维有效导热系数的影响规律。研究发现:有效导热系数随纤维体积分数的变化呈非线性,存在最小值。纤维有效导热系数与直径成反比,与长度成正比,方向角对有效导热系数有影响,方向角越接近90°,则纤维固则有效导热系数越低。通过与已有实验数据和理论数据对比,验证了本模型的可靠性。

关键词


真空绝热板;纤维多孔介质;格子-Boltzmann方法;有效导热系数

全文:

PDF

参考


杜杰,豆孟柯,王建信,等.组合矩形蓄冷壳体的疫苗冷藏箱仿真与实验研究[J].制冷技术,2021,41(5):105-110.

Sveipe E ,Jelle B P ,Wegger E ,et al.Improving Thermal Insulation of Timber Frame Walls by Retrofitting with Vacuum Insulation Panels – Experimental and Theoretical Investigations[J].Journal of Building Physics,2014,35(2):168-188.

ZHOU C,CHEN Z F,QIU J L,et al.Vacuum Insulation Panel for Green Building[J].Applied Mechanics and Materials,2011(71):607-611.

LAKATOS A,KOVáCS Z.Comparison of thermal insulation performance of Vacuum Insulation Panels with EPS protection layers measured with different methods[J].Energy and Buildings,2021,236(4):110771.

黄熠.真空绝热板及其在冰箱上的应用[J].制冷技术,2011,31(1):38-42.

CHOI B,YEO I,LEE J.Pillar-supported vacuum insulation panel with multi-layered filler material[J].International Journal of Heat and Mass Transfer,2016(102):902-910.

Chen B;Kan A,Chen Z,et al. Investigation on effective thermal conductivity of fibrous porous materials as vacuum insulation panels' core using lattice Boltzmann method[J].Energies,2023(16):3692.

ZHANG H,FANG W Z,LI Y M.Experimental study of the thermal conductivity of polyurethane foams[J].Applied Thermal Engineering,2017(115):528-538.

陈沈绪恺,全晓军,李金京.基于格子Boltzmann方法的水平管外层流膜状冷凝换热模拟[J].制冷技术,2022,42(4):15-21.

ENGUEHARD F.Multi-scale modeling of radiation heat transfer through nanoporous super insulating materials[J].International Journal of Thermophysics,2007,28(5):1693-1717.

SPAGNOL S,LARTIGUE B,TROMBE A.Thermal modeling of two-dimensional periodic fractal patterns, an application to nano porous media[J].Euro physics Letters,2007,78(4):46005.

KWON J S,JANG C H,JUNG H.Effective thermal conductivity of various filling materials for vacuum insulation panels[J].International Journal of Heat and Mass Transfer,2009,52(23):5525-5532.

FRICKE J,SCHWAB H,HEINEMANN U.Vacuum insulation panels-exciting thermal properties and most challenging applications[J].International Journal of Thermophysics,2006,27(4):1123-1139.

LALLICH S,ENGUEHARD F,BAILLIS D.Experimental determination and modeling of the radiative properties of silica nanoporous matrices[J].Journal of Heat Transfer,2009,131(8):082701.

WANG M,PAN N.Modeling and prediction of the effective thermal conductivity of random open-cell porous foams[J].International Journal of Heat and Mass Transfer,2008,51(5):1325-1331.

LIU H,KANG Q,LEONARDI C R.Multiphase lattice Boltzmann simulations for porous media applications[J].Computational Geofences,2014,20(4):777-805.

WEI G,LIU Y,ZHANG X.Thermal conductivities study on silica aerogel and its composite insulation materials[J].International Journal of Heat and Mass Transfer,2011,54(11):2355-2366.

HUSSAIN M,TAO W Q.Numerical prediction of effective thermal conductivity of ceramic fiber board using lattice Boltzmann method[J].Numerical Heat Transfer, Part A: Applications,2018,74(6):1285-1300.

HAGER N E,STEERE R C.Radiant Heat Transfer in Fibrous Thermal Insulation[J].Journal of Applied Physics,1967,38(12):4663-4668.

KAN A K,ZHANG Q L,CHE Z F N,et al.,Novel prediction of thermal conductivities for nano-aerogel and its composites as vacuum insulation panel core[J].International Journal of Thermal Sciences,2023(189):108277.

BRUNNER S,WAKILI K G,STAHL T.Vacuum insulation panels for building applications:continuous challenges and developments[J].Energy and Buildings,2014(85):592-596.




DOI: https://doi.org/10.33142/ect.v2i2.11338

Refbacks

  • 当前没有refback。