体能科学

基于速度的力量训练中不同速度损失阈值的疲劳恢复研究

米亚舒 (中北大学体育学院), 王奕坤 (中北大学体育学院)

摘要


目的:本研究旨在比较三种不同速度损失阈值(VLT:10%、20%、30%)下的深蹲训练对机体疲劳恢复特征的差异效应,为教练员制定科学训练计划提供理论依据。方法:招募15名健康男性大学生受试者,采用自身交叉对照试验设计。每名受试者依次完成三种VLT的深蹲训练。分别在训练前(基线)、训练后即刻、6h、12h、24h及48h采集以下指标:心率变异性(HRV (RMSSD值))、血乳酸浓度、反向跳跃高度(CMJ)、下肢主要肌群表面肌电信号(sEMG (MF值))以及主观感知恢复程度量表得分。结果:双因素(VLT水平、时间点)重复测量方差分析显示:VLT主效应:对血乳酸浓度、CMJ跳跃高度、sEMG中位频率(MF)及主观恢复程度均存在极显著影响(P<0.001);对HRV(RMSSD)有显著影响(P<0.05)。时间主效应:对HRV(RMSSD)、血乳酸浓度、CMJ跳跃高度、sEMG中位频率(MF)及主观恢复程度均存在极显著影响(P<0.001)。交互效应:VLT水平与时间点对血乳酸浓度、CMJ跳跃高度、sEMG中位频率(MF)及主观恢复程度的交互作用极显著(P<0.001);对HRV(RMSSD)的交互作用显著(P<0.05)。与训练前基线值(T0)相比,三种VLT训练后即刻(T1),所有监测指标均发生显著变化(P<0.05)。恢复时间特征:10%VLT:训练后24h,各项指标基本恢复至运动前水平;20%VLT:训练后48h,各项指标恢复至运动前水平。30%VLT:训练后48h,各项指标恢复至运动前水平。结论:在以深蹲为训练动作的速度基础力量训练中,提高速度损失阈值(VLT)会加剧机体疲劳程度,并显著延长所需恢复时间。VLT可作为量化评估训练所致疲劳及其恢复动态的有效指标。

关键词


基于速度的力量训练;速度损失阈值;深蹲训练;疲劳;恢复

全文:

PDF

参考


闫琪,廖婷,张雨佳.数字化体能训练的理念、进展与实践[J].体育科学,2018,38(11):3-16.

González-Badillo J J,Marques M C,Sánchez-Medina L.The importance of movement velocity as a measure to control resistance training intensity[J].Journal of human kinetics,2011(29):15.

Sindiani M,Lazarus A,Iacono A D,et al.Perception of changes in bar velocity in resistance training:Accuracy levels within and between exercises[J].Physiology & Behavior,2020(224):113025.

González-Badillo J J,Sánchez-Medina L.Movement velocity as a measure of loading intensity in resistance training[J].International journal of sports medicine,2010,31(5):347-352.

Marasingha-Arachchige S U,Rubio-Arias J A,Alcaraz P E,et al.Factors that affect heart rate variability following acute resistance exercise:A systematic review and meta-analysis[J].Journal of sport and health science,2022,11(3):376-392.

Buchheit M, Laursen P B,Ahmaidi S.Parasympathetic reactivation after repeated sprint exercise[J].American journal of physiology-heart and circulatory physiology,2007,293(1):133-141.

Rodiles-Guerrero L,Sánchez-Valdepeña J,Cornejo-Daza P J,et al.Effects of Velocity Loss During Bench-Press Training With Light Relative Loads[J].International Journal of Sports Physiology and Performance,2024,1(aop1):1-11.

Schoenfeld B J.Potential mechanisms for a role of metabolic stress in hypertrophic adaptations to resistance training[J].Sports Med,2013,43(3):179-194.

Weakley J,McLaren S,Ramirez-Lopez C,et al.Application of velocity loss thresholds during free-weight resistance training:Responses and reproducibility of perceptual,metabolic, and neuromuscular outcomes[J].Journal of Sports Sciences,2020,38(5):477-485.

Sanchez-Medina L,González-Badillo J J.Velocity loss as an indicator of neuromuscular fatigue during resistance training[J].Medicine and science in sports and exercise,2011,43(9):1725-1734.

Rodríguez-Rosell D,Yá?ez-García J M,Mora-Custodio R,et al.Role of the Effort Index in Predicting Neuromuscular Fatigue During Resistance Exercises[J].The Journal of Strength & Conditioning Research,2020(27).

Pareja-Blanco F,Villalba-Fernández A,Cornejo-Daza P J,et al.Time course of recovery following resistance exercise with different loading magnitudes and velocity loss in the set[J].Sports,2019,7(3):59.

Tsoukos A,Brown L E,Terzis G,et al.Changes in EMG and movement velocity during a set to failure against different loads in the bench press exercise[J].Scandinavian Journal of Medicine & Science in Sports,2021,31(11):2071-2082.

Tesch P A,Komi P V,Jacobs I,et al.Influence of lactate accumulation of EMG frequency spectrum during repeated concentric contractions[J].Acta Physiologica Scandinavica,1983,119(1):61-67.

Sousa Neto I V,Sousa N M F,Neto F R,et al.Time course of recovery following CrossFit?Karen Benchmark workout in trained men[J].Frontiers in Physiology,2022(13):899652.




DOI: https://doi.org/10.33142/jscs.v5i5.17655

Refbacks

  • 当前没有refback。


版权所有(c){$ COPYRIGHTYEAR} {$ copyrightHolder}

Creative Commons License
此作品已接受知识共享署名-非商业性使用 4.0国际许可协议的许可。