A Review of Lane Detection Based on Deep Learning Methods
Abstract
Keywords
Full Text:
PDFReferences
Song Ruitao, Li Bin. Surrounding Vehicles’lane change maneuver prediction and detection for intelligent vehicles: a comprehensive review[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23:6046-6062.
Wang Zhangu, Jun Zhan, C. Duan, et al.. A review of vehicle detection techniques for intelligent vehicles[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023,34:3811-3831.
Lin Lianghao. Research on structured road recognition algorithm based on image processing[D]. Harbin University of Science and Technology, 2021.
Zhong Zebin. An image graying method for lane line recognition[J]. Journal of Tongji University (Natural Science Edition), 2019,47:178-182.
Ahmed Hashem, T. Schlechter. Feature-based lane detection algorithms for track following: a comparative study[C]. 2022 International Conference on Mechatronics and Robotics Engineering, 2022.
Yu Fuxing, Wu Yafeng, Suo Yina, et al.. Shallow detail and semantic segmentation combined bilateral network model for lane detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2023,24:8617-8627.
Guo Rui. Research and exploration of lane line detection based on deep learning[C]. International Conference on Image Processing & Computer Vision (IPCV), 2023.
Zhong Haomai. Research and application of lane line detection method based on deep learning[D]. Xi'an University of Technology, 2023.
Tian Sheng, Zhang Jianfeng, Zhang Yutian, et al.. Lane line detection algorithm based on expanded convolutional pyramid network[D]. Journal of Southwest Jiaotong University, 2020,55:386-392.
Li Xiaoxiao, X. Hu, Z. Wang. Advances in instance segmentation research based on deep learning[J]. Computer Engineering and Applications, 2021,57:60-67.
X. Liu, Hu Xiaoguang, Wang Ziqiang, et al.. Progress of anchor-less frame-based object detection method and its application in complex scenes[J]. Journal of Automation, 2023,49:1369-1392.
Yeongmin Ko, Jun Jiwon, Donghwuy Ko, et al.. Key points estimation and point instance segmentation approach for lane detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2021,23:8949-8958.
Lv Chuan. Research on lane line recognition and tracking method based on key point detection[D]. Northwest A&F University, 2021.
Wang Jinsheng, Ma Yinchao, Huang Shaofei, et al.. A keypoint-based global association network for lane detection[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022.
S. Ettinger, Chen Shuyang , Benjamin Caine, Large scale interactive motion forecasting for autonomous driving: the waymo open motion dataset[C]. 2021 IEEE/CVF International Conference on Computer Vision, 2021.
Zhang Youcheng, Lu Zongqing, Zhang Xuechen, et al.. Deep learning in lane marking detection: a survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2022,23:5976-5992.
Wang Xi. Lane line detection algorithm in abnormal driving environment[D]. Beijing Jiaotong University, 2022.
L. Tabelini, R. Berriel, T. Paixao. Polylanenet: lane estimation via deep polynomial regression[C]. Proceedings of 2020 25th International Conference on Pattern Recognition, 2020.
Teng Zhu, J. Kim, D. Kang. Real-time lane detection by using multiple cues[C]. International Conference on Control, Automation and Systems, 2010.
S. Kumar, M. Jailia, S. Varshney. An efficient approach for highway lane detection based on the hough transform and kalman filter[J]. Innovative infrastructure solutions, 2022,7(5):290.
G. Taubel, R. Sharma, J. Yang. An experimental study of a lane departure warning system based on the optical flow and hough transform methods [J]. WSEAS Transaction on Systems, 2014,13:105.
W. Kruger, W. Enkelmann, S. Rossle. Real-time estimation and tracking of optical flow vectors for obstacle detection [C].Proceedings of the Intelligent Vehicles' 95. Symposium, 1995.
J. Niu, J. Lu, M. Xu, et al.. Robust lane detection using two-stage feature extraction with curve fitting[J]. Pattern Recognition, 2016,59:225-233.
W. Van Gansbeke, B. Brabandere, D. Neven. End-to-end lane detection through differentiable least-squares fitting[C]. IEEE/CVF International Conference on Computer Vision Workshops, 2019.
A. Krizhevsky, X. Sutskever, G. Hinton. Imagenet classification with deep convolutional neural networks[J]. Communications of the ACM, 2012,60:84-90.
S. Yalabaka, C. Prasad, P. Sanjana. Lane detection using deep learning techniques[c]. Proceedings of 2022 8th International Conference on Signal Processing and Communication (ICSC), 2022.
J. Redmon, S. Divvala, R. Girshick. You only look once: unified, real-time object detection[C]. Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
Ren Shaoqin, He Kaiming, R. Girshick, et al.. Faster r-cnn: towards real-time object detection with region proposal networks[J]. Advances in neural information processing systems, 2015,39:1137-1149.
A. Vaswani , N. Shazeer, N. Parmar. Attention is all you need[J]. Neural Information Processing Systems, 2017: 5998-6008.
Wang Biyao, Han Yi, Cui Hangbin, et al.. Image-based road semantic segmentation detection method[J]. Journal of Shandong University, 2023,53:37-47.
K. Muhammad, T. Hussain, H. Ullah. Vision-based semantic segmentation in scene understanding for autonomous driving: recent achievements, challenges, and outlooks[J]. IEEE Transactions on Intelligent Transportation Systems, 2022(23):22694-22715.
Tian Xuan, Wang Liang, Ding Qi. A review of deep learning based image semantic segmentation methods[J]. Journal of Software, 2019,30:440-468.
E. Shelhamer, J. Long, T. Darrell. Fully convolutional networks for semantic segmentation[C]. Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
V. Badrinarayanan, A. Kendall, R. Cipolla. Segnet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE transactions on pattern analysis and machine intelligence, 2017,39:2481-2495.
H. Noh, S. Hong, B. Han. Learning deconvolution network for semantic segmentation[C]. Proceedings of the IEEE international conference on computer vision, 2015.
O. Ronneberger, P. Fischer, T. Brox. U-Net: convolutional networks for biomedical image segmentation[J]. Proceedings of Medical Image Computing and Computer-Assisted Intervention, 2015:234-241.
Yang Shuqin, Ma Yuhao, Fang Mingyu, et al.. Instance segmentation based lane line detection for complex environments[J]. Journal of Zhejiang University (Engineering Edition), 2022,56:809-815.
A. Paszke, A. Chaurasia,S. Kim. Enet: a deep neural network architecture for real-time semantic segmentation[J]. arXiv, 2016,1606.02147.
Wang Ze, Ren Weiqiang. Qiu Qiang. Lanenet: real-time lane detection networks for autonomous driving[J]. arXiv, 2018,1807.01726.
Yi. S, Jun Yu Li, Xu Xin. Adaptive multi-lane detection based on robust instance segmentation for intelligent vehicles[J]. IEEE Transactions on Intelligent Vehicles, 2022,8:888-899.
Xu Pengbin, Qu Anguo, Wang Kunfeng. A review of panoramic segmentation research[J]. Journal of Automation, 2021,47: 549-568.
Wang Hai, Qiu Meng, Cai Yingfeng, et al.. Sparse u-pdp: a unified multi-task framework for panoptic driving perception[J]. IEEE Transactions on Intelligent Transportation Systems, 2023,24:11308-11320.
Zhao Hengshuang, Shi Jianpin, Qi Xiaojuam, et al.. Pyramid scene parsing network[C]. Proceedings of the IEEE conference on computer vision and pattern recognition, 2017.
W. Liu, D. Anguelov, D. Erhan. Ssd: single shot multibox detector[C]. European Conference on Computer Vision (ECCV), 2016.
Tan Mingxing, Pang Ruoming, Q. Le. Efficientdet: scalable and efficient object detection[C]. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020.
He Kaiming, G. Gkioxar, P. Dollár. Mask r-cnn. Proceedings of 2017 IEEE International Conference on Computer Vision (ICCV)[C]. 2017.
Zheng Tu, Huang Yifei, Liu Yang, et al.. Clrnet: cross layer refinement network for lane detection[C]. Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.
Ran Hao, Yin Yunfei, Huang Faliang, et al.. Flamnet: a flexible line anchor mechanism network for lane detection[C]. IEEE Transactions on Intelligent Transportation Systems, 2021.
Yu Zichen, Liu Quanli, Wang Wen, et al.. Dalnet: A rail detection network based on dynamic anchor line[J]. arXiv, 2023,2308.11381.
Qin Zequn, Zhang Pengyi, Li Xi. Ultra fast deep lane detection with hybrid anchor driven ordinal classification[J]. IEEE transactions on pattern analysis and machine intelligence, 2022:1-14.
A. Gurghian, T. Koduri, S. Bailur. Deeplanes: end-to-end lane position estimation using deep neural networks[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2016.
D. Neven, B. De, S. Georgoulis. Towards end-to-end lane detection: an instance segmentation approach[C]. 2018 IEEE intelligent vehicles symposium(IV), 2018.
Liu Tuijin, Yuan Zejian, Liu Tie, et al.. End-to-end lane shape prediction with transformers[C]. Proceedings of the IEEE/CVF winter conference on applications of computer vision, 2021.
Feng Zhengyang, Guo Shaohua, Tan Xin, et al.. Rethinking efficient lane detection via curve modeling[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.
Z. Qu, Jin Huan, Zhou Yang, et al.. Focus on local: detecting lane marker from bottom up via key point[C]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021.
Wang Jinsheng, Ma Yinchao, Huang Shaofei. A keypoint-based global association network for lane detection[C]. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.
DOI: https://doi.org/10.33142/mes.v5i2.12721
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Yunzuo ZHANG, Zhiwei TU, Fenfen LYU
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.