Computer Vision-Based Human Body Posture Correction System
Abstract
Keywords
Full Text:
PDFReferences
Moreira Rayele, et al. A computer vision-based mobile tool for assessing human posture: A validation study[J]. Computer Methods and Programs in Biomedicine, 2022 (214):106565.
Debnath B, O’Brien M, Yamaguchi M, et al. A review of computer vision-based approaches for physical rehabilitation and assessment[J]. Multimedia Systems, 2022,28(1):209-239.
Hellsten T, Karlsson J, Shamsuzzaman M, et al. The potential of computer vision-based marker-less human motion analysis for rehabilitation[J]. Rehabilitation Process and Outcome, 2021(10):1-12.
Andriluka M, Iqbal U, Insafutdinov E, et al. PoseTrack: A benchmark for human pose estimation and tracking[C]. Salt Lake City: IEEE, 2018.
Sun Ke. Hierarchical occlusion reasoning for human pose estimation with incomplete data[J]. IEEE Computer Vision and Pattern Recognition (CVPR), 2021(11):55-59.
Gao Y, Ren Y, Zhang D, et al. Multi-level attention network for fine-grained action recognition[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019.
Zhao Y, Xiong Y, Wang L, et al. Weakly supervised action recognition through contrastive spatiotemporal regions[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020.
Zhang Y, Cui W, Cao Y, et al. Multimodality human action recognition with deep attention mechanism[J]. Computers & Electrical Engineering, 2020(80):221-239.
Tang Y, Liu R. Skeleton Embedding of multiple granularity attention network for human action recognition[C]. International Conference on Articulated Motion and Deformable Objects Springer, 2020.
Liang ZJ, Wang XL, Huang R, et al. An Expressive deep model for human action parsing from a single image[C]. 2014 IEEE International Conference on Multimedia and Expo (ICME). Chengdu: IEEE, 2014.
Zhai W, Zhang Y, Cheng H, et al. Cooperative eye tracking: a gaze-aware interface for 3D object manipulation[C]. Proceedings of the ACM International Conference on Interactive Surfaces and Spaces, 2019.
Yang X, Chen Y, Liu J, et al. Rapid prototyping of tangible augmented reality interfaces: towards exploratory learning for science education[J]. Interactive Learning Environments, 2019,27(4):469-483.
Zhang D, Peng Y, Yang W, et al. Multi-viewpoint interaction with social robots: a case study of speech therapy for children with autism[J]. Journal of Intelligent & Robotic Systems, 2018,92(3-4):359-372.
Zhang R, Li J, Xiao T, et al. BodyPoseNet: Body pose estimation driven by deep neural networks[J]. Signal Processing: Image Communication, 2021(99):116290.
Chen L, Papandreou G, Kokkinos I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018,40(4):834-848.
Zeng W, Gao Y, Zheng Y, et al. DenseReg: Fully convolutional dense regression for accurate 3D human pose estimation[J]. IEEE Transactions on Image Processing, 2021(30):2830-2842.
Li J, Chen L, Wei Y, et al. CrowdPose: Efficient crowded scenes pose estimation and a new benchmark[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019.
Du W, Wang X, Wang X, et al. PoseFix: Model-agnostic general human pose refinement network[C]. Proceedings of the ACM SIGGRAPH Conference on Computer Graphics and Interactive Techniques, 2020.
Zhu L, Zhou C, Li S, et al. CTSegNet: A context-transformed segmentation network for brain tumor segmentation[C]. Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine, 2019.
Ji Xiaodong, Yang Qiaoning, Yang Xiuhui, et al. Human pose estimation: multi-stage network based on HRNet [J]. Journal of Physics: Conference Series, 2022,(1):2400.
He K, Zhang X, Ren S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015,37(9):1904-1916.
Papandreou G, Zhu T, Kanazawa N, et al. Towards accurate multi-person pose estimation in the wild[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
Wei L, Zhang S, Dai J, et al. ST-GCN: Spatial temporal graph convolutional networks for skeleton-based action recognition[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.
Sun M, He X, Yang S. U^2-Net (RE) for Human Pose Estimation[J]. arXiv preprint arXiv, 2021(2102):380.
Zhou F, Zhu M, Bai J, et al. Deformable ConvNets v2: More deformable, better results[C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2018.
Carreira J, Agrawal P, Fragkiadaki K, et al. Associative embedding: End-to-end learning for joint detection and grouping[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016.
Papandreou G, Zhu T, Kanazawa N, et al. PersonLab: Person pose estimation and instance segmentation with a bottom-up, part-based, geometric embedding model[C]. Proceedings of the European Conference on Computer Vision, 2018.
Kreiss S, Bertoni A, Alahi A. PifPaf: Composite fields for human pose estimation[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019.
Insafutdinov M, Pishchulin L, Andres B, et al. DeepCut: Joint subset partition and labeling for multi person pose estimation[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016.
Newell A, Yang K, Deng J. Stacked hourglass networks for human pose estimation[C]. Proceedings of the European Conference on Computer Vision (ECCV), 2016.
Chen Y, Wang Z, Peng Y, et al. Cascaded pyramid network for multi-person pose estimation[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.
Sun K, Xiao B, Liu D, et al. Deep high-resolution representation learning for human pose estimation[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019.
Xiao B, Wu H, Wei Y. Simple baseline for human pose estimation and tracking[C]. Proceedings of the European Conference on Computer Vision (ECCV), 2018.
Wei L, Zhang S, Yin W, et al. Convolutional pose machines[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
DOI: https://doi.org/10.33142/mes.v6i1.13221
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Yangsen QIU, Yukun WANG, Yuchen WU, Xinyi QIANG, Yunzuo ZHANG
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.