Embedded Sensor System for Five-degree-of-freedom Error Detection on Machine Tools
Abstract
Keywords
Full Text:
PDFReferences
Schwenke H, Knapp W, Haitjema H, et al. Geometric error measurement and compensation of machines—an update[J]. CIRP Annals, 2008, 57(2): 660-675.
Ibaraki S, Knapp W. Indirect measurement of volumetric accuracy for three-axis and five-axis machine tools: a review[J]. International Journal of Automation Technology, 2012, 6(2): 110-124.
Ibaraki S, Sawada M, Matsubara A, et al. Machining tests to identify kinematic errors on five-axis machine tools[J]. Precision Engineering, 2010, 34(3): 387-398.
Ibaraki S, Ota Y. A machining test to evaluate geometric errors of five-axis machine tools with its application to thermal deformation test[J]. Procedia CIRP, 2014, 14: 323-328.
Su Z, Wang L. Latest development of a new standard for the testing of five-axis machine tools using an S-shaped test piece[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2015, 229(7): 1221-1228.
Fan K C, Wang H Y, Yang H W, et al. Techniques of multi-degree-of-freedom measurement on the linear motion errors of precision machines[J]. Advanced Optical Technologies, 2014, 3(4): 375-386.
Fan K C, Chen M J, Huang W M. A six-degree-of-freedom measurement system for the motion accuracy of linear stages[J]. International Journal of Machine Tools and Manufacture, 1998, 38(3): 155-164.
Fan K C, Chen M J. A 6-degree-of-freedom measurement system for the accuracy of XY stages[J]. Precision Engineering, 2000, 24(1): 15-23.
Liu C H, Jywe W Y, Hsu C C, et al. Development of a laser-based high-precision six-degrees-of-freedom motion errors measuring system for linear stage[J]. Review of scientific instruments, 2005, 76(5): 055110.
Feng Q, Zhang B, Cui C, et al. Development of a simple system for simultaneously measuring 6DOF geometric motion errors of a linear guide[J]. Optics express, 2013, 21(22): 25805-25819.
Cui C, Feng Q, Zhang B, et al. System for simultaneously measuring 6DOF geometric motion errors using a polarization maintaining fiber-coupled dual-frequency laser[J]. Optics express, 2016, 24(6): 6735-6748.
Gao S, Zhang B, Feng Q, et al. Errors crosstalk analysis and compensation in the simultaneous measuring system for five-degree-of-freedom geometric error[J]. Applied Optics, 2015, 54(3): 458-466.
Zhao Y, Zhang B, Feng Q. Measurement system and model for simultaneously measuring 6DOF geometric errors[J]. Optics express, 2017, 25(18): 20993-21007.
Gillmer S R, Yu X, Wang C, et al. Robust high-dynamic-range optical roll sensing[J]. Optics letters, 2015, 40(11): 2497-2500.
Yu X, Gillmer S R, Ellis J D. Beam geometry, alignment, and wavefront aberration effects on interferometric differential wavefront sensing[J]. Measurement Science and Technology, 2015, 26(12): 125203..
Yu X, Gillmer S R, Woody S C, et al. Development of a compact, fiber-coupled, six degree-of-freedom measurement system for precision linear stage metrology[J]. Review of Scientific Instruments, 2016, 87(6): 065109.
Huang P, Li Y, Wei H, et al. Five-degrees-of-freedom measurement system based on a monolithic prism and phase-sensitive detection technique[J]. Applied optics, 2013, 52(26): 6607-6615.
Wu S M. An on-line measurement technique for machine volumetric error compensation[J]. Ann Arbor, 1993, 1050: 48109.
Huang P S, Ni J. On-line error compensation of coordinate measuring machines[J]. International Journal of Machine Tools and Manufacture, 1995, 35(5): 725-738.
Chen B, Xu B, Yan L, et al. Laser straightness interferometer system with rotational error compensation and simultaneous measurement of six degrees of freedom error parameters[J]. Optics express, 2015, 23(7): 9052-9073.
Li J, Feng Q, Bao C, et al. Method for simultaneous measurement of five DOF motion errors of a rotary axis using a single-mode fiber-coupled laser[J]. Optics express, 2018, 26(3): 2535-2545.
Mutilba U, Gomez-Acedo E, Kortaberria G, et al. Traceability of on-machine tool measurement: a review[J]. Sensors, 2017, 17(7): 1605.
Liu S, Zhang S, Huang Y, et al. The Method for Restraining Laser Drift Based on Controlling Mirror[J]. Nanomanufacturing and Metrology, 2018: 1-8.
Torng J, Wang C H, Huang Z N, et al. A novel dual-axis optoelectronic level with refraction principle[J]. Measurement Science and Technology, 2013, 24(3): 035902.
Bryan J B. The Abbe principle revisited: an updated interpretation[J]. Precision Engineering, 1979, 1(3): 129-132.
Huang Y B, Fan K C, Sun W, Liu S J. Low cost, compact 4-DOF measurement system with active compensation of beam angular drift error. Optics Express, 2018, 26(13): 17185-17198.
Cai Y, Yang B H, Fan K C. A robust roll angular error measurement method for precision machines. Optics Express, 2019, 27(6): 8027-8036.
Liu S, Tan S, Huang Y, et al. Design of a compact four degree-of-freedom active compensation system to restrain laser’s angular drift and parallel drift. Review of Scientific Instruments, 2019, 90(11): 115002.
DOI: https://doi.org/10.33142/me.v1i2.1655
Refbacks
- There are currently no refbacks.
Copyright (c) 2019 Yubin Huang, Kuang-Chao Fan, Wei Sun
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.