Modeling size-dependent behaviors of axially functionally graded Bernoulli-Euler micro-beam
Abstract
Keywords
Full Text:
PDFReferences
Asghari M, Ahmadian M T, Kahrobaiyan M H, Rahaeifard M, 2010. On the size-dependent behavior of functionally graded micro-beams. Materials & Design. 31(5), 2324-2329. https://doi.org/10.1016/j.matdes.2009.12.006
Dai H L, Wang Y K, Wang L, 2015. Nonlinear dynamics of cantilevered microbeams based on modified couple stress theory. International Journal of Engineering Science. 94, 103-112. https://doi.org/10.1016/j.ijengsci.2015.05.007
Dehrouyeh-Semnani A M, Nikkhah-Bahrami M, 2015a. The influence of size-dependent shear deformation on mechanical behavior of microstructures-dependent beam based on modified couple stress theory. Composite Structures. 123, 325-336. https://doi.org/10.1016/j.compstruct.2014.12.038
Dehrouyeh-Semnani A M, Nikkhah-Bahrami M, 2015b. A discussion on incorporating the poisson effect in microbeam models based on modified couple stress theory. International Journal of Engineering Science. 86, 20-25. https://doi.org/10.1016/j.ijengsci.2014.10.003
Ghayesh M H, Farokhi H, Gholipour A, Tavallaeinejad M, 2017. Nonlinear bending and forced vibrations of axially functionally graded tapered microbeams. International Journal of Engineering Science. 120, 51-62. https://doi.org/10.1016/j.ijengsci.2017.03.010
Heydari A, Jalali A, Nemati A, 2017. Buckling analysis of circular functionally graded plate under uniform radial compression including shear deformation with linear and quadratic thickness variation on the Pasternak elastic foundation. Applied Mathematical Modelling. 41, 494-507. https://doi.org/10.1016/j.apm.2016.09.012
Huang Y, Li X F, 2010. A new approach for free vibration of axially functionally graded beams with non-uniform cross-section. Journal of Sound and Vibration. 329(11), 2291-2303. https://doi.org/10.1016/j.jsv.2009.12.029
Karamanlı A, Vo T P, 2018. Size dependent bending analysis of two directional functionally graded microbeams via a quasi-3D theory and finite element method. Composites Part B: Engineering. 144, 171–183. https://doi.org/10.1016/j.compositesb.2018.02.030
Ke L L, Wang Y S, 2011. Size effect on dynamic stability of functionally graded micro-beams based on a modified couple stress theory. Composite Structure. 93(2), 342-350. https://doi.org/10.1016/j.compstruct.2010.09.008
Ke L L, Wang Y S, Yang J, Kitipornchai S, 2012a. Free vibration of size-dependent Mindlin microplates based on the modified couple stress theory. Journal of Sound and Vibration. 331(1), 94-106. https://doi.org/10.1016/j.jsv.2011.08.020
Ke L L, Yang J, Kitipornchai S, Bradford M A, 2012b. Bending, buckling and vibration of size-dependent functionally graded annular microplates. Composite Structures. 94(11), 3250-3257. https://doi.org/10.1016/j.compstruct.2012.04.037
Kong S L, Zhou S J, Nie Z F, Wang K, 2008. The size-dependent natural frequency of Bernoulli-Euler micro-beams. International Journal of Engineering Science. 46(5), 427-437. https://doi.org/10.1016/j.ijengsci.2007.10.002
Kouzeli M, Mortensen A, 2002. Size dependent strengthening in particle reinforced aluminium. Acta Materialia. 50(1), 39-51. https://doi.org/10.1016/S1359-6454(01)00327-5
Lama D C C, Yang F, Chonga A C M, Wang J, Tong P, 2003. Experiments and theory in strain gradient elasticity. Journal of the Mechanics and Physics of Solids. 51, 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X
Li X B, Li L, Hu Y J, Ding Z, Deng W M, 2017. Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory. Composite Structures. 165, 250-265. https://doi.org/10.1016/j.compstruct.2017.01.032
Liu Z, Meyers M A, Zhang Z, Ritchie R O, 2017. Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications. Progress in Materials Science. 88, 467-498. https://doi.org/10.1016/j.pmatsci.2017.04.013
Ma H M, Gao X L, Reddy J N, 2008. A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. Journal of the Mechanics & Physics of Solids. 56(12): 3379-3391. https://doi.org/10.1016/j.jmps.2008.09.007
Mohammadabadi M, Daneshmehr A R, Homayounfard M, 2015. Size-dependent thermal buckling analysis of micro composite laminated beams using modified couple stress theory. International Journal of Engineering Science. 92, 47-62. https://doi.org/10.1016/j.ijengsci.2015.03.005
Naebe M, Shirvanimoghaddam K, 2016. Functionally graded materials: A review of fabrication and properties. Applied Materials Today. 5, 223-245. https://doi.org/10.1016/j.apmt.2016.10.001
Park S K, Gao X L, 2006. Bernoulli-Euler beam model based on a modified couple stress theory. Journal of Micromechanics & Microengineering. 16(11), 2355-2359. http://iopscience.iop.org/article/10.1088/0960-1317/16/11/015/meta
Pradhan K K, Chakraverty S, 2013. Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh-Ritz method. Composites Part B: Engineering. 51(4), 175-184. https://doi.org/10.1016/j.compositesb.2013.02.027
Reddy J N, 2000. Analysis of functionally graded plates. International Journal for Numerical Methods in Engineering. 47(1-3), 663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8
Reddy J N, 2011. Microstructure-dependent couple stress theories of functionally graded beams. Journal of the Mechanics & Physics of Solids. 59(11), 2382-2399. https://doi.org/10.1016/j.jmps.2011.06.008
Salamat-Talab M, Nateghi A, Torabi J, 2012. Static and dynamic analysis of third-order shear deformation FG micro beam based on modified couple stress theory. International Journal of Mechanical Sciences. 57(1), 63-73. https://doi.org/10.1016/j.ijmecsci.2012.02.004
Shahba A, Attarnejad R, Marvi M T, Hajilar S, 2011. Free vibration and stability analysis of axially functionally graded tapered Timoshenko beams with classical and non-classical boundary conditions. Composites Part B: Engineering. 42(4), 801-808. https://doi.org/10.1016/j.compositesb.2011.01.017
Sola A, Bellucci D, Cannillo V, 2016. Functionally graded materials for orthopedic applications - an update on design and manufacturing. Biotechnology Advances. 34(5), 504-531. https://doi.org/10.1016/j.biotechadv.2015.12.013
Thai H T, Vo T P, Nguyen T K, Lee J, 2015. Size-dependent behavior of functionally graded sandwich microbeams based on the modified couple stress theory. Composite Structures. 123, 337-349. https://doi.org/10.1016/j.compstruct.2014.11.065
Thai H T, Vo T P, Nguyen T K, Kim S E, 2017. A review of continuum mechanics models for size-dependent analysis of beams and plates. Composite Structures. 177, 196–219. https://doi.org/10.1016/j.compstruct.2017.06.040
Trinh L C, Nguyen H X, Vo T P, Nguyen T K, 2016. Size-dependent behaviour of functionally graded microbeams using various shear deformation theories based on the modified couple stress theory. Composite Structures. 154, 556-572. https://doi.org/10.1016/j.compstruct.2016.07.033
Wu L, Wang Q S, Elishakoff I, 2005. Semi-inverse method for axially functionally graded beams with an anti-symmetric vibration mode. Journal of Sound and Vibration. 284(3-5), 1190-1202. https://doi.org/10.1016/j.jsv.2004.08.038
Xu F, Zhang X, Zhang H, 2018. A review on functionally graded structures and materials for energy absorption. Engineering Structures. 171, 309-325. https://doi.org/10.1016/j.engstruct.2018.05.094
Yang F, Chong A C M, Lam D C C, Tong P, 2002. Couple stress based strain gradient theory for elasticity. International Journal of Solids and Structures. 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X
Zdeněk P, Bažant, 1984. Size effect in blunt fracture: concrete, rock, metal. Journal of Engineering Mechanics. 110 (4), 518-535. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:4(518)
Zhao L, Chen W Q, Lü C F, 2012. Symplectic elasticity for bi-directional functionally graded materials. Mechanics of Materials. 54, 32-42. https://doi.org/10.1016/j.mechmat.2012.06.001
DOI: https://doi.org/10.33142/mes.v2i1.2617
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Shuai WANG, Zetian KANG, Shichen ZHOU, Bo ZHOU, Shifeng XUE
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.