自然科学研究

纳米生物传感器在细菌耐药性检测中的应用

罗茂雨 (广西民族大学海洋与生物技术学院), 袁梦祥 (广西民族大学海洋与生物技术学院), 谭欣怡 (广西民族大学海洋与生物技术学院), 杨权湘 (广西民族大学海洋与生物技术学院), 余佳华 (广西民族大学海洋与生物技术学院), 覃慧娴 (广西民族大学海洋与生物技术学院), 黄化 (广西民族大学海洋与生物技术学院), 廖艳娟 (广西民族大学海洋与生物技术学院)

摘要


细菌耐药性已成为全球公共卫生领域面临的重大挑战,随着耐药菌株的不断增加,传统的耐药性检测方法往往存在时间长、准确性差等诸多问题,亟须寻找新的检测技术。近年来,纳米生物传感器的出现为细菌耐药性检测提供了新的解决方案,其具有高灵敏度和快速检测的优点。本论文综述了纳米生物传感器在细菌耐药性检测中的应用现状,分析了不同类型纳米材料(如金属纳米颗粒、碳基纳米材料等)的优缺点,探讨了这些传感器的检测机制及其灵敏度表现。同时,评估了纳米生物传感器在临床应用中的潜力,强调了其对抗击细菌耐药性的重要性。最后,本论文展望了纳米生物传感器在未来发展中的机遇和挑战,旨在为相关领域的研究者提供参考并促进技术的进步。

关键词


细菌耐药性;纳米生物传感器;检测方法;临床应用;纳米材料

全文:

PDF

参考


Camacho Silvas LA. Bacterial resistance, a current crisis[J]. Rev Esp Salud Publica,2023(97):11-12.

Jansen KU, Gruber WC, Simon R, Wassil J, Anderson AS. The impact of human vaccines on bacterial antimicrobial resistance[J]. A review. Environ Chem Lett,2021,19(6):4031-4062.

Gabutti G. Available evidence and potential for vaccines for reduction in antibiotic prescriptions[J].Hum Vaccin Immunother,2022,18(7):2151291.

Novelli M, Bolla JM. RND Efflux Pump Induction: A Crucial Network Unveiling Adaptive Antibiotic Resistance Mechanisms of Gram-Negative Bacteria[J].Antibiotics (Basel),2024,13(6).

Singh N, Dkhar DS, Chandra P, et al. nano-biosensors Design Using 2D Materials: Implementation in Infectious and Fatal Disease Diagnosis[J]. Biosensors (Basel),2021,13(2):99-100.

Ji D, Zhao J, Liu Y, et al. Electrical nano-biosensors for Nucleic Acid Based Diagnostics[J]. J Phys Chem Lett,2023,14(17):4084-4095.

Sharifi M, Hosseinali SH, Hossein Alizadeh R, et al. Plasmonic and chiroplasmonic nano-biosensors based on gold nanoparticles[J].Talanta,2021(212):120782.

Kumari M, Gupta V, Kumar N, Arun RK. Microfluidics-Based nano-biosensors for Healthcare Monitoring[J]. Mol Biotechnol,2024,66(3):378-401.

Cheeseman S, Christofferson AJ, Kariuki R, et al. Antimicrobial Metal Nanomaterials: From Passive to Stimuli-Activated Applications[J]. Adv Sci (Weinh),2020,7(10):1902913.

Pal N, Dutta G, Kharashi K, et al. Investigation of an Impedimetric LaSrMnO3-Au/Y2O3-ZrO2-Al2O3 Composite NOx Sensor[J].Materials (Basel),2022,15(3).

Wang Y, Gu M, Cheng J, et al. Antibiotic Alternatives: Multifunctional Ultra-Small Metal Nanoclusters for Bacterial Infectious Therapy Application[J]. Molecules,2024,29(13).

An X, Erramilli S, Reinhard BM. Plasmonic nano-antimicrobials: properties, mechanisms and applications in microbe inactivation and sensing[J].Nanoscale,2021,13(6):3374-3411.

Ma?átková O, Michailidu J, Mi?kovská A, Kolouchová I, Masák J, ?ejková A. Antimicrobial properties and applications of metal nanoparticles biosynthesized by green methods[J].Biotechnol Adv,2019(58):107905.

Li C, Che B, Deng L. Electrochemical Biosensors Based on Carbon Nanomaterials for Diagnosis of Human Respiratory Diseases[J].Biosensors (Basel),2022,13(1).

Sundaram P, Abrahamse H. Phototherapy Combined with Carbon Nanomaterials (1D and 2D) and their Applications in Cancer Therapy[J].Materials (Basel),2020,13(21).

Rasilainen I, Lahtela V, K?rki T. A review of plastic waste nanocomposites: assessment of features and applications[J]. Discov Nano,2024,19(1):112.

Paca AM, Ajibade PA. Metal Sulfide Semiconductor Nanomaterials and Polymer Microgels for Biomedical Applications[J]. Int J Mol Sci,2021,22(22).

Prats-Ejarque G, Li J, Ait-Ichou F, Lorente H, Boix E. Testing a Human Antimicrobial RNase Chimera Against Bacterial Resistance[J].Front Microbiol,2019(10):1357.

Bennett I, Pyne ALB, McKendry RA. Cantilever Sensors for Rapid Optical Antimicrobial Sensitivity Testing[J]. ACS Sens,2020,5(10):3133-3139.

Hannah S, Addington E, Alcorn D, Shu W, Hoskisson PA, Corrigan DK. Rapid antibiotic susceptibility testing using low-cost, commercially available screen-printed electrodes[J].Biosens Bioelectron,2023(145):111696.

Yu Y, Nie W, Chu K, et al. Highly Sensitive, Portable Detection System for Multiplex Chemiluminescence Analysis[J].Anal Chem,2023,95(39):14762-14769.

Yu J, Yu C, Li Y, et al. The single strand template shortening strategy improves the sensitivity and specificity of solid-state nanopore detection[J].Chem Commun (Camb),2024,60(35):4723-4726.

Hwang S, Choi J. Rapid antimicrobial susceptibility testing for low bacterial concentrations integrating a centrifuge based bacterial cell concentrator[J].Lab Chip,2023,23(2):229-238.

Sheervalilou R, Shirvaliloo M, Sargazi S, et al. Application of Nanobiotechnology for Early Diagnosis of SARS-CoV-2 Infection in the COVID-19 Pandemic[J].Appl Microbiol Biotechnol,2021,105(7):2615-2624.

Goldoni R, Farronato M, Connelly ST, Tartaglia GM, Yeo WH. Recent advances in graphene-based nano-biosensors for salivary biomarker detection[J].Biosens Bioelectron,2021(171):112723.

Sanders MJ, Miller L, Bhagwat SA, van der Grient JMA, Rogers AD. Practitioner insights as a means of setting a context for conservation[J].Conserv Biol,2020,34(1):113-124.

Mastella P, Todaro B, Luin S. Nanogels: Recent Advances in Synthesis and Biomedical Applications[J].Nanomaterials (Basel),2024,14(15).

Ray SK, Mukherjee S. Innovative Nanomaterials for Targeting Hypoxia to Improve Treatment for Triple-negative Breast Cancer[J].Recent Pat Biotechnol,2024,18(4):269-272.

Milner DA Jr, Lennerz JK. Technology and Future of Multi-Cancer Early Detection[J].Life (Basel),2024,14(7).

Gholami N, Haghparast A, Alipourfard I, Nazari M. Prostate cancer in omics era[J]. Cancer Cell Int,2022,2(1):274.

Gao H, Yan C, Wu W, Li J. Application of Microfluidic Chip Technology in Food Safety Sensing[J].Sensors (Basel),2020,20(6).

Liu H, Zou Q, Qiao Z, et al. Facile Homobifunctional Imidoester Modification of Advanced Nanomaterials for Enhanced Antibiotic Synergistic Effect[J].ACS Appl Mater Interfaces,2021,13(34):40401-40414.

Alazeb A, Chughtai BR, Al Mudawi N, et al. Remote intelligent perception system for multi-object detection[J].Front Neurorobot,2024(18):1398703.




DOI: https://doi.org/10.33142/nsr.v1i3.14910

Refbacks

  • 当前没有refback。


版权所有(c){$ COPYRIGHTYEAR} {$ copyrightHolder}