自然科学研究

甘蔗渣生物炭基催化剂构效关系在环境能源应用中的研究进展

李云翔 (广西民族大学 化学化工学院), 张立旺 (广西民族大学 化学化工学院), 李文轩 (广西民族大学 化学化工学院), 覃佳勇 (广西民族大学 化学化工学院), 吴雨 (广西民族大学 化学化工学院), 罗忠玮 (广西民族大学 化学化工学院), 黄在银 (广西民族大学 化学化工学院)

摘要


甘蔗渣作为制糖工业的典型副产物,凭借其天然多级孔结构、丰富表面官能团及可再生特性,成为构建低成本、可持续光/电催化剂的理想碳基载体。本论文系统综述了甘蔗渣碳基材料在光/电催化领域的协同改性策略与应用进展。通过热解活化、元素掺杂(如N、S、Co)、半导体复合(如Cu2O、TiO2/SiO2)及异质结工程(Z型、S型)等技术,精准调控材料的孔隙结构、能带特性与界面电子传输机制,显著提升其催化活性与稳定性。研究表明,优化后的甘蔗渣基催化剂对氧四环素、环丙沙星等污染物展现出高效降解能力(降解率>90%),并具有可见光驱动的产氢潜力(12.8μmol·g-1·h-1)。异质结设计与多级孔结构的协同作用,使载流子分离效率提升至78.5%,同时石墨化碳层与界面化学键合(如C-O-M键)增强材料导电性与循环稳定性(50次循环后效率衰减<10%)。此外,绿色改性工艺(如低温热解、生物质还原剂)有效降低碳足迹,推动农林废弃物资源化与绿色制造。未来研究需进一步阐明光/电协同机制,优化大电流密度下的界面稳定性,并拓展其在能源转化与环境污染治理中的规模化应用。本论文为设计“吸附-催化”耦合体系及高值化利用生物质废弃物提供了理论依据与技术范式。

关键词


甘蔗渣;光/电催化;碳基载体:协同改性策略

全文:

PDF

参考


Anil K ,Vinod K ,Bijender S . Cellulosic and hemicellulosic fractions of sugarcane bagasse: Potential, challenges and future perspective [J]. International Journal of Biological Macromolecules,2020(169):11-15.

Karimah A ,Wistara J N ,Fatriasari W , et al. Green preparations of nanolignin from acid-saccharification-treated sugarcane trash [J]. Process Biochemistry,2024(144):266-277.

Chauhan S ,Bhar R ,Ray K , et al. Enhanced visible light photocatalytic degradation of oxytetracycline through sugarcane bagasse biochar supported layered WS2 type-II staggered heterojunction: Towards performance, degradation pathway, toxicity, and life cycle assessment. [J]. Environmental research,2025(271):121100.

Hsiang I T ,Ju B Y ,Ya P C . Sugarcane bagasse supported graphitic carbon nitride for photocatalytic conversion of carbon dioxide [J]. Catalysis Communications,2022(1):106431.

Thuy L N ,Thi H N ,Manh K N , et al. Combined Adsorption and Photocatalytic Degradation for Ciprofloxacin Removal Using Sugarcane Bagasse/N,S-TiO2 Powder Composite [J]. Water,2021,13(16):2300-2300.

Aline A D R ,Francielli M C ,Jo?o M L H F , et al. Photocatalytic oxidation of textile dye using sugarcane bagasse-Nb2O5 as a catalyst [J]. Journal of Photochemistry & Photobiology, A: Chemistry,2022(1):432.

Yadav S ,Chauhan M ,Mathur D , et al. Sugarcane bagasse-facilitated benign synthesis of Cu 2 O nanoparticles and its role in photocatalytic degradation of toxic dyes: a trash to treasure approach [J]. Environment, Development and Sustainability,2020,23(2):1-21.

Wibawa S H ,Candra E ,Amellia P S , et al. Titania Modified Silica from Sugarcane Bagasse Waste for Photocatalytic Wastewater Treatment [J]. IOP Conference Series: Materials Science and Engineering,2021(1):143.

Tang J ,Cheng Z ,Xu Q , et al. Bagasse modification of red mud for efficient photocatalytic degradation of real dye wastewater: an utilization attempt for massive waste. [J]. Environmental research,2024(267):120608.

Liang, Y., Xiong, J., Yang, Q., & Wang, S. Bagasse cellulose-based S-type Bi2O3/Zn3In2S6 photocatalyst for efficient and stable degradation of 2,4-dichlorophenol under visible light[J]. Journal of Colloid and Interface Science,2023(1):99-101.

Qinghua J ,Xiaojie Y ,Li C , et al. Effect of cobalt doping and sugarcane bagasse carbon on the electrocatalytic performance of MoS2 nanocomposites [J].Fuel,2022(324):22-25.

Shen Y ,Peng F ,Cao Y , et al. Preparation of nitrogen and sulfur co-doped ultrathin graphitic carbon via annealing bagasse lignin as potential electrocatalyst towards oxygen reduction reaction in alkaline and acid media [J]. Journal of Energy Chemistry,2019(34):33-42.

S A ,Patil A S ,Manippady R S , et al. Nickel engineered in-situ graphitization of carbon derived from bagasse: A robust and highly efficient catalyst for oxygen evolution reaction and water remediation [J]. Journal of Cleaner Production,2024(451):142002.

Ji Q ,Li Z ,Su L , et al. Preparation of sugarcane bagasse carbon-coated molybdenum phosphide nanocomposite electrocatalyst for hydrogen evolution reaction [J]. Journal of Electroanalytical Chemistry,2024(968):118513-118513.

Rostami S ,Azizi N S ,Ghasemi S . Using of silver nanoparticles incorporated in nanoporous ZSM-5 hierarchical zeolite prepared from bagasse as a new sensor for electrocatalytic determination of H2O2 in biological samples [J]. Journal of Electroanalytical Chemistry,2017(799):583-588.




DOI: https://doi.org/10.33142/nsr.v2i1.15888

Refbacks

  • 当前没有refback。


版权所有(c){$ COPYRIGHTYEAR} {$ copyrightHolder}