Boron Carbide and Composites in Advanced Energy Storage: Research Progress and Prospects
Abstract
Keywords
Full Text:
PDFReferences
Boldin M S, Berendeev N N, Melekhin N V, et al. Review of ballistic performance of alumina: Comparison of alumina with silicon carbide and boron carbide [J]. Ceramics International, 2021, 47(18): 25201-25213.
Gosset D. Absorber materials for Generation IV reactors [M] // Structural materials for generation IV nuclear reactors. Woodhead Publishing, 2017: 533-567.
Sheikhi S, Stroberg W, Hogan J D. Effects of chain configuration and stoichiometry on the behavior of boron carbide from first-principle calculations [J]. Materials Today Communications, 2024, 40: 110205.
Aselage T L. High temperature thermoelectric properties of boron carbide [J]. MRS Online Proceedings Library (OPL) , 1991, 234: 145.
Domnich V, Reynaud S, Haber R A, et al. Boron Carbide: Structure, Properties, and Stability under Stress [J]. Journal of the American Ceramic Society, 2011, 94(11): 3605-3628.
Song S, Xu W, Cao R, et al. B4C as a stable non-carbon-based oxygen electrode material for lithium-oxygen batteries [J]. Nano Energy, 2017, 33: 195-204.
Wang H, Ma C, Yang X, et al. Fabrication of boron-doped carbon fibers by the decomposition of B4C and its excellent rate performance as an anode material for lithium-ion batteries [J]. Solid State Sciences, 2015, 41: 36-42.
Duhduh A A, Saraswat S K, Lagum A A, et al. Exploring Ni-doped boron carbide nanotubes: Structural and electronic properties for proton-exchange membrane fuel cells [J]. Inorganic Chemistry Communications, 2023, 155: 111110.
Pellegrini V, Bodoardo S, Brandell D, et al. Challenges and perspectives for new materials solutions in batteries [J]. Solid State Communications, 2019, 303: 113733.
Goikolea E, Palomares V, Wang S, et al. Na-ion batteries-approaching old and new challenges [J]. Advanced Energy Materials, 2020, 10(44): 2002055.
Thevenot F. Boron carbide-a comprehensive review [J]. Journal of the European Ceramic Society, 1990, 6(4): 205-225.
Reddy K M, Liu P, Hirata A, et al. Atomic structure of amorphous shear bands in boron carbide [J]. Nature Communications, 2013, 4(1): 2483.
Yang X , Goddard W A , An Q .The Structure and Properties of Boron-Very-Rich Boron Carbides: B12 Icosahedra Linked through Bent CBB Chains[J].The Journal of Physical Chemistry C, 2018, 122(4): 2448-2453.
Mondal S. New insights into the bonding mechanism of boron carbide[J]. Acta Crystallographica Section A: Foundations and Advances, 2017, 73(a2):C382.
Feng B, Martin H P, Michaelis A. Synthesis of Boron Carbide Powder via Rapid Carbothermal Reduction Using Boric Acid and Carbonizing Binder [J]. Ceramics, 2022, 5(4): 837-847.
Eremeeva Z V , Myakisheva L V , Panov V S , et al.Spark Plasma Sintering of the Stock Material Made of the Boron Carbide Obtained by Different Methods[J].Inorganic Materials: Applied Research, 2019, 10(1): 74-80.
Torabi O, Ebrahimi-Kahrizsangi R. Synthesis of B4C, Al2O3, and AlB12 reinforced Al matrix nano composites via mechanochemical method[J]. Journal of Composite Materials, 2012, 46(18):2227-2237.
Wei, Z. An overview of the synthesis of silicon carbide-boron carbide composite powders [J]. Nanotechnology Reviews, 2023, 12(1): 20220571.
Avcıoğlu S, Buldu-Akturk M, Erdem E, et al. Boron carbide as an electrode material: Tailoring particle morphology to control capacitive behaviour [J]. Materials, 2023, 16(2): 861.
Zhang L, Shi J, Shen C, et al. B4C-Al Composites Fabricated by the Powder Metallurgy Process[J].Applied Sciences, 2017, 7(10):1009.
Wang X, Gao X, Zhang Z, et al. Advances in modifications and high-temperature applications of silicon carbide ceramic matrix composites in aerospace: A focused review[J]. Journal of the European Ceramic Society, 2021, 41(9): 4671-4688.
Kuzubov A, Kuzubov, Aleksandr S, et al. High-capacity electrode material BC3 for lithium batteries proposed by ab initio simulations [J]. Physical Review B: Condensed Matter and Materials Physics, 2012, 85(19): 195415.
Synthesis and Characterization of Li-containing Boron Carbide r-Li similar to 1B13C2 [J]. Zeitschrift fur Anorganische und Allgemeine Chemie, 2019, 645(3): 362-369.
Chen X, Li X, Ding F, et al. Conductive Rigid Skeleton Supported Silicon as High-Performance Li-Ion Battery Anodes[J]. Nano Letters, 2012, 12(8):4124-4130.
Su W, Xie Y, Wu K, et al. SnS2/B4C@OUCNTs as a high-performance anode material for lithium-ion batteries[J].Ionics, 2023 , 29: 3955-3969.
Tan Y, Luo H, Zhang H, et al. Graphene nanoplatelet reinforced boron carbide composites with high electrical and thermal conductivity[J]. Journal of the European Ceramic Society, 2016, 36(11):2679-2687.
Ding S, Yan X, Rehman J, et al. Revealing the key factors affecting the anode performance of metal-ion batteries: a case study of boron carbide monolayers[J]. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2024, 12(40):27703-27711.
Hussain K, Muhammad I, Wu W, et al. 3D Porous Metallic Boron Carbide Crystal Structure with Excellent Ductility [J]. Advanced Theory and Simulations, 2021, 4(12): 2100325.
Zhang H, Xiong D, Xie Y, et al. A simple synthesis of VSe2/B4C@HCG composite as high-performance anodes for sodium-ion batteries[J]. Journal of Alloys and Compounds, 2023, 935(Part2): 168111.
Sun Y, Yang Y. Shi X L, et al. Self-standing and high-performance B4C/Sn/acetylene black@reduced graphene oxide films as sodium-ion half/full battery anodes [J]. Applied Materials Today, 2021, 24: 101137.
Fang R, Chen K, Sun Z, et al. Realizing high‐energy density for practical lithium-sulfur batteries [J]. Interdisciplinary Materials, 2023, 2(5): 761-770.
Zhou G, Chen H, Cui Y. Formulating energy density for designing practical lithium-sulfur batteries [J]. Nature Energy, 2022, 7(4): 312-319.
He J, Bhargav A, Manthiram A. High-energy-density, long-life lithium-sulfur batteries with practically necessary parameters enabled by low-cost Fe-Ni nanoalloy catalysts [J]. ACS Nano, 2021, 15(5): 8583-8591.
Manthiram A, Fu Y, Su Y S. Challenges and prospects of lithium-sulfur batteries [J]. Accounts of Chemical Research, 2013, 46(5): 1125-1134.
Manthiram A, Chung S H, Zu C. Lithium-sulfur batteries: progress and prospects [J]. Advanced Materials, 2015, 27(12): 1980-2006.
Song N, Gao Z, Zhang Y, et al. B4C nanoskeleton enabled, flexible lithium-sulfur batteries [J]. Nano Energy, 2019, 58: 30-39.
Luo L, Chung S H, Yaghoobnejad Asl H, et al. Long-Life Lithium-Sulfur Batteries with a Bifunctional Cathode Substrate Configured with Boron Carbide Nanowires[J]. Advanced Materials, 2018, 30(39): e1804149.
Zhang R, Chi C, Wu M, et al. A long-life Li-S battery enabled by a cathode made of well-distributed B4C nanoparticles decorated activated cotton fibers [J]. Journal of Power Sources, 2020, 451: 227751.
Lv H, Peng T, Wu P, et al. Nano-boron carbide supported platinum catalysts with much enhanced methanol oxidation activity and CO tolerance [J]. Journal of Materials Chemistry, 2012, 22(18): 9155-9160.
Sharma A, Rangra V S, Thakur A. Synthesis, properties, and applications of MBenes (two-dimensional metal borides) as emerging 2D materials: a review [J]. Journal of Materials Science, 2022, 57(27): 12738-12751.
Zhu G, Li G, Zhao X, et al. Application of diamond and super-hard carbide in fuel cell catalysis [J]. Ionics, 2023, 29(12): 4971-4986.
Grubb W T, McKee D W. Boron carbide, a new substrate for fuel cell electrocatalysts [J]. Nature, 1966, 210(5032): 192-194.
Meibuhr S G. Performance of oxygen fuel cell cathodes catalysed with boron carbide [J]. Nature, 1966, 210(5034): 409-410.
Mu S, Chen X, Sun R, et al. Nano-size boron carbide intercalated graphene as high performance catalyst supports and electrodes for PEM fuel cells [J]. Carbon, 2016, 103: 449-456.
DOI: https://doi.org/10.33142/rams.v7i1.18641
Refbacks
- There are currently no refbacks.
Copyright (c) 2026 Zhigang YU, Shaoyi SHEN, Jifeng WANG, Song WU, Aoyi DONG, Xinhua ZHENG, Shikai LIU

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


