自然科学研究

基于尺寸效应对纳米钼酸钡溶解动力学参数及表面热力学函数的研究

王异 (广西民族大学), 蓝芝文 (广西民族大学), 黄旭东 (广西民族大学), 覃佳勇 (广西民族大学), 陆胜达 (广西民族大学), 黄在银 (广西民族大学)

摘要


由于纳米颗粒表现出显著的表面效应,其溶解动力学特性与相应的块体材料存在显著差异。本研究在288.15至328.15 K的温度范围内测定了不同粒径纳米钼酸钡的电导率,结合溶解度法、溶解动力学和化学动力学过渡态理论,构建了相应的动力学模型。本工作成功获得了钼酸钡的溶解动力学参数,并通过实验结果的详尽讨论与验证,确认了该溶解过程遵循 Arrhenius 规律。此外,本研究还通过溶解动力学参数推导出了表面热力学函数,这些发现对于纳米材料的制备与应用提供了重要的科学指导。

关键词


纳米钼酸钡;溶解动力学参数;过渡态理论;动力学模型;表面热力学函数

全文:

PDF

参考


Yu, N. F.; Tian, N.; Zhou, Z. Y.; Huang, L.; Xiao, J.; Wen, Y. H.; Sun, S. G. Advances and prospects of porphyrin derivatives in the energy field[J]. Angew Chem Int Ed Engl,2014,53(20):097-101.

Hu, C.; Chen, R.; Zheng, N. Chemical insights into interfacial effects in inorganic nanomaterials[J]. Adv Mater,2021,33(50):2006159.

Goyal, M.; Goyal, V. Effect of size and temperature on vacancy concentration in nanomaterials[J]. Pramana,2021,95(3):22-23.

Yu, W.; Dong, Q.; Yu, W.; Qin, Z.; Nie, X.; Wan, Q.; Chen, X. Preparation of halloysite/Ag2O nanomaterials and their performance for iodide adsorption[J]. Minerals,2022,12(3):99-100.

Aguilar, N.Aparicio, S. Theoretical Insights into CO2 Adsorption by MoS2 Nanomaterials[J].The Journal of Physical Chemistry C,2019(43):6338-6350.

Rahman, M. M.Alam, K. Clean energy, population density, urbanization and environmental pollution nexus: Evidence from Bangladesh[J].Renewable Energy,2021(172):1063-1072.

Kustov, L. M. Catalysis by hybrid nanomaterials[J]. Molecules,2021,26(2):99-100.

Gómez-López, P.; Puente-Santiago, A.; Castro-Beltrán, A.; Santos do Nascimento, L. A.; Balu, A. M.; Luque, R. Nanomaterials and catalysis for green chemistry[J]. Current Opinion in Green and Sustainable Chemistry,2020(24):48-55.

Zhang, Q.Yang, X.; Guan, J. Applications of magnetic nanomaterials in heterogeneous catalysis[J].ACS Applied Nano Materials,2019,2(8):4681-4697.

Percebom, A. M.Towesend, V. J.; de Paula Silva de Andrade Pereira, M.; Pérez Gramatges, A. Morphology-dependent sensing performance of CuO nanomaterials[J].Current Opinion in Green and Sustainable Chemistry,2018(12):8-14.

Li, N.; Li, Q.; Guo, X.; Yuan, M.; Pang, H. Controllable synthesis of oxalate and oxalate-derived nanomaterials for applications in electrochemistry[J]. Chemical Engineering Journal,2019(372):551-571.

Rodgers, A. N. J.; Rabiu, A. K.; Toth, P. S.; Adams, R. W. Dryfe, R. A. W. Assembly and electrochemistry of carbon nanomaterials at the liquid-liquid interface[J]. Electrochimica Acta,2019(308):307-316.

Frohlich, E.“Biology and Medicine”: A Section of Nanomaterials Addressing Interactions of Nanomaterials with All Forms of Life[J].Nanomaterials (Basel),2021,11(9):34-35.

Shin, T. H.; Cheon, J. Synergism of Nanomaterials with Physical Stimuli for Biology and Medicine[J]. Acc Chem Res,2017,50(3):567-572.

Alencar, L. D. S. Mesquita, A.; Feitosa, C. A. C.; Balzer, R.; Probst, L. F. D.; Batalha, D. C.; Rosmaninho, M. G.; Fajardo, H. V.; Bernardi, M. I. B. Preparation, characterization and catalytic application of Barium molybdate (BaMoO4) and Barium tungstate (BaWO4) in the gas-phase oxidation of toluene[J].Ceramics International,2017,43(5):4462-4469.

甯红波,李泽荣,李象远.燃烧反应动力学研究进展[J].物理化学学报,2016,32(1):131-153.

Hashemi, H.; Babaee, S.; Mohammadi, A. H.; Naidoo, P.; Ramjugernath D. Experimental study and modeling of the kinetics of refrigerant hydrate formation[J]. The Journal of Chemical Thermodynamics,2015(82):47-52.

Luo, X.-L.; Wang, M.-J.; Yun, L.; Yang, J.; Chen, Y.-S. Structure-dependent activities of Cu2O cubes in thermal decomposition of ammonium perchlorate[J]. Journal of Physics and Chemistry of Solids,2016(90):1-6.

Chaudhary, A.-L.; Sheppard, D. A.; Paskevicius, M.; Pistidda, C.; Dornheim, M.; Buckley C. E. The dissolution rates of SiO2 nanoparticles as a function of particle size[J]. Acta Materialia,2015(95):244-253.

汤焕丰,黄在银,肖明,梁敏,陈栎莹.立方体纳米氧化亚铜反应动力学的理论及实验研究[J].物理化学学报,2016(12):2891-2897.




DOI: https://doi.org/10.33142/nsr.v1i2.14016

Refbacks

  • 当前没有refback。


版权所有(c){$ COPYRIGHTYEAR} {$ copyrightHolder}