自然科学研究

活体细菌在药物载体中的表面修饰策略

尹梓沣 (广西民族大学 海洋与生物技术学院), 苏小凌 (广西民族大学 海洋与生物技术学院), 王中灵 (广西民族大学 海洋与生物技术学院), 黄立明 (广西民族大学 海洋与生物技术学院), 樊芝伶 (广西民族大学 海洋与生物技术学院), 陈雨珊 (广西民族大学 海洋与生物技术学院), 彭敏童 (广西民族大学 海洋与生物技术学院), 廖艳娟 (广西民族大学 海洋与生物技术学院)

摘要


活体细菌因其独特的生物相容性、易于获取性及靶向输送能力,近年来成为药物载体研究的热点。活体细菌不仅能够有效地携带药物,还能通过其生物特性实现靶向治疗,从而提高疗效并减少副作用。随着生物医学技术的进步,对细菌表面进行修饰的研究逐渐增多,以期提升药物的递送效率和靶向性。当前,活体细菌的表面修饰主要包括化学修饰、基因工程修饰和物理修饰等多种方法,各种修饰技术各具优缺点,并在药物递送中展现出不同的应用潜力。然而,活体细菌作为药物载体的研究仍面临诸多挑战,如生物安全性、细菌的存活率及药物释放控制等问题。本论文旨在综述活体细菌作为药物载体的表面修饰现状,探讨其在未来药物递送中的应用前景,为相关领域的研究提供参考和启示。

关键词


活体细菌;药物载体;表面修饰;药物递送;靶向治疗

全文:

PDF

参考


Hua T, Zheng B, Bai Y. Advances in the application of live bacteria as vehicles for delivering antitumor drugs[J].Sheng Wu Gong Cheng Xue Bao,2024,40(11):3861-3871.

Song D, Yang X, Chen Y, et al. Advances in anti-tumor based on various anaerobic bacteria and their derivatives as drug vehicles[J]. Front Bioeng Biotechnol,2023(11):1286502.

Yao J, Zou P, Cui Y, et al. Recent Advances in Strategies to Combat Bacterial Drug Resistance: Antimicrobial Materials and Drug Delivery Systems[J].Pharmaceutics,2023,15(4).

Wu F, Liu J. Decorated bacteria and the application in drug delivery[J].Adv Drug Deliv Rev,2024(188):114443.

Bader LPE, Klok HA. Chemical Approaches for the Preparation of Bacteria - Nano/Microparticle Hybrid Systems[J].Macromol Biosci,2023,23(8):2200440.

Liu P, Hu Q. Engineering Cells for Cancer Therapy[J].Acc Chem Res,2024,57(16):2358-2371.

Dennis JA, Johnson NW, Thorpe TW, Wallace S. Biocompatible α-Methylenation of Metabolic Butyraldehyde in live bacteria[J].Angew Chem Int Ed Engl,2023,62(38):202306347.

Zhang J, Fu Y, Zhou R, et al. The Construction of Alkaline Phosphatase-Responsive Biomaterial and Its Application for In Vivo Urinary Tract Infection Therapy[J].Adv Healthc Mater,2023,12(10):2202421.

Wu X, Xu J, Yang X, Wang D, Xu X. Integrating Transcriptomics and Metabolomics to Explore the Novel Pathway of Fusobacterium nucleatum Invading Colon Cancer Cells[J]. Pathogens,2023,12(2).

Wang S, Chen Y, Chen R, Ma X, Kang X. Steerable artificial magnetic bacteria with target delivery ability of calcium carbonate for soil improvement[J].Appl Microbiol Biotechnol,2023,107(18):5687-5700.

El-Malek FA, Steinbüchel A. Post-Synthetic Enzymatic and Chemical Modifications for Novel Sustainable Polyesters[J].Front Bioeng Biotechnol,2021(9):817023.

Basavarajappa GM, Priyanka KM, Goudanavar P, et al. A spotlight on application of microwave-assisted modifications of plant derived polymers in designing novel drug delivery systems[J].Des Monomers Polym,2023,26(1):106-116.

Ma J, Liu Q. Identification techniques of small molecule drug target proteins without chemical modification and its applications: a review[J].Sheng Wu Gong Cheng Xue Bao,2021,37(4):1131-1138.

Parker CG, Pratt MR. Click Chemistry in Proteomic Investigations[J].Cell,2020,180(4):605-632.

Thomsen T, Klok HA. Chemical Cell Surface Modification and Analysis of Nanoparticle-Modified Living Cells[J].ACS Appl Bio Mater,2021,4(3):2293-2306.

Hu X, Wang T, Li F, Mao X. Surface modifications of biomaterials in different applied fields[J]. RSC Adv,2023,13(30):20495-20511.

Quinn MK, James S, McManus JJ. Chemical Modification Alters Protein-Protein Interactions and Can Lead to Lower Protein Solubility[J].J Phys Chem B,2019,123(20):4373-4379.

Ciaccia PN, Liang Z, Schweitzer AY, Metzner E, Isaacs FJ. Enhanced eMAGE applied to identify genetic factors of nuclear hormone receptor dysfunction via combinatorial gene editing[J].Nat Commun,2024,15(1):5218.

Zhu D, Yan H, Zhou Z, et al. Influence of the Modulation of the Protein Corona on Gene Expression Using Polyethylenimine (PEI) Polyplexes as Delivery Vehicle[J].Adv Healthc Mater,2021,10(13):2100125.

Sang N, Jiang L, Wang Z, et al. Bacteria-targeting liposomes for enhanced delivery of cinnamaldehyde and infection management[J].Int J Pharm,2023(612):121356.

McMillan JR, Hayes OG, Winegar PH, Mirkin CA. Protein Materials Engineering with DNA[J]. Acc Chem Res,2019,52(7):1939-1948.

Wang Y, Fu X, Zhu Y, et al. An intratumor bacteria-targeted DNA nanocarrier for multifaceted tumor microenvironment intervention[J].Mater Today Bio,2024(27):101144.

Wu Y, Li Q, Liu Y, et al. Targeting hypoxia for sensitization of tumors to apoptosis enhancement through supramolecular biohybrid bacteria[J]. Int J Pharm,2023(605):120817.

Li Y, Liu X, Cui Z, et al. Inflammation and Microbiota Regulation Potentiate Pneumonia Therapy by Biomimetic Bacteria and Macrophage Membrane Nanosystem[J].Research (Wash D C),2023(6):0096.

Li W, Zhan X, Song X, et al. A Review of Recent Applications of Ion Beam Techniques on Nanomaterial Surface Modification: Design of Nanostructures and Energy Harvesting[J].Small,2019,15(31):1901820.

Lu J, Nie M, Li Y, Zhu H, Shi G. Design of composite nanosupports and applications thereof in enzyme immobilization: A review[J]. Colloids Surf B Biointerfaces,2021(217):112602.

Sondhi P, Maruf MHU, Stine KJ. Nanomaterials for Biosensing Lipopolysaccharide[J].Biosensors (Basel),2019,10(1).

Son NN, Thanh VM, Huong NT. Synthesis of F127-GA@ZnO nanogel as a cisplatin drug delivery pH-sensitive system[J]. RSC Adv,2024,14(47):35005-35020.

Zhou X, Guo L, Shi D, Duan S, Li J. Biocompatible Chitosan Nanobubbles for Ultrasound-Mediated Targeted Delivery of Doxorubicin[J]. Nanoscale Res Lett,2019,14(1):24.

Mbituyimana B, Ma G, Shi Z, Yang G. Polymeric microneedles for enhanced drug delivery in cancer therapy[J].Biomater Adv,2022(142):213151.

Xu J, Zhang J, Shi Y, et al. Surface Modification of Biomedical Ti and Ti Alloys: A Review on Current Advances[J].Materials (Basel),2022,15(5).

Liang S. Advances in drug delivery applications of modified bacterial cellulose-based materials[J]. Front Bioeng Biotechnol,2023(11):1252706.

Li G, Zhao M, Xu F, et al. Synthesis and Biological Application of Polylactic Acid[J]. Molecules,2020,5(21).

Cheng B, Chen QY, Zhang X, et al. Improved Biocompatibility and Angiogenesis of the Bone Titanium Scaffold through ERK1/2 Signaling Mediated by an Attached Strontium Element[J]. Biol Trace Elem Res,2024,202(4):1559-1567.

Moustafa DA, Wu AW, Zamora D, et al. Peptide-Conjugated Phosphorodiamidate Morpholino Oligomers Retain Activity against Multidrug-Resistant Pseudomonas aeruginosa In Vitro and In Vivo[J].mBio,2021,12(1).

He W, Zheng S, Zhang H, et al. Plant-Derived Vesicle-Like Nanoparticles: Clinical Application Exploration and Challenges[J]. Int J Nanomedicine,2023(18):5671-5683.




DOI: https://doi.org/10.33142/nsr.v1i3.14909

Refbacks

  • 当前没有refback。


版权所有(c){$ COPYRIGHTYEAR} {$ copyrightHolder}