Preparation of Na3V2(PO4)3 Cathode Materials by Hydrothermal Assisted Sol-Gel Method for Sodium -Ion Batteries
Abstract
Keywords
Full Text:
PDFReferences
Sun B X, Zhao X Z, et al., Virtual Battery Pack-Based Battery Management System Testing Framework, Energies, 2023, 16, 680, https://doi.org/10.3390/en16020680
Singh A N, Nam K W, Solid-state synthesized batteries get upset, Matter, 2022, 5, 1347–1349, https://doi.org/10.1016/j.matt.2022.04.003
Li M, Lu J, Chen Z, et al., 30 Years of Lithium-Ion Batteries, Advanced Materials, 2018, 30, 1800561, https://doi.org/10.1002/adma.201800561.
Chen S, Wu C, Shen L, et al., Challenges and perspectives for NASICON-Type electrode materials for advanced sodium-ion batteries, Advanced Materials, 2017, 29, 1700431, https://doi.org/10.1002/adma.201700431.
Zhang W L, Yin J, et al., Status of rechargeable potassium batteries, Nano Energy, 2021, 83, 105792, https://doi.org/10.1016/j.nanoen.2021.105792.
Ren W, Zhu Z, An Q, et al., Emerging prototype sodium-ion full cells with nanostructured electrode materials, Small, 2017, 13, 1604181, https://doi.org/10.1002/smll.201604181.
Yabuuchi N, Kubota K, et al., Research development on sodium-ion batteries, Chemical Reviews, 2014, 114, 11636-11682, https://doi.org/10.1021/cr500192f.
Jian Z, Zhao L, Pan H, et al., Carbon coated Na3V2(PO4)3, as novel electrode material for sodium ion batteries, Electrochemistry Communications, 2012, 14, 86-89, https://doi.org/10.1016/j.elecom.2011.11.009.
Park S, Wang Z L, et al., Crystal Structure of Na2V2(PO4)3, an Intriguing Phase Spotted in the Na3V2(PO4)3–Na1V2(PO4)3 System, Chemistry of Materials, 2022, 34, 451-462, https://doi.org/10.1021/acs.chemmater.1c04033.
Chen H, Huang Y, Mao G, et al., Reduced graphene oxide decorated Na3V2(PO4)3 microspheres as cathode material with advanced sodium storage performance, Frontiers in Chemistry, 2018, 6, 174, https://doi.org/10.3389/fchem.2018.00174.
Jiang Y, Zhou X, Li D, et al., Highly Reversible Na Storage in Na3V2(PO4)3 by Optimizing Nanostructure and Rational Surface Engineering, Advanced Energy Materials, 2018, 8, 1800068, https://doi.org/10.1002/aenm.201800068.
Bao S, Huang Y Y, et al., Porous Na3V2(PO4)3 as cathode material for high-rate sodium-ion batteries by sacrificed template method, Ionics, 2020, 26, 5011–5018, https://doi.org/10.1007/s11581-020-03635-0.
Wang C, Long H, et al., A multiphase sodium vanadium phosphate cathode material for high-rate sodium-ion batteries, Journal of Materials Science & Technology, 2021, 66, 121–127, https://doi.org/10.1016/j.jmst.2020.05.076.
Senthilkumar B, Murugesan C, et al., Electrochemical insertion of potassium ions in Na4Fe3(PO4)2P2O7 mixed phosphate, Journal of Power Sources, 2020, 480, 228794, https://doi.org/10.1016/j.jpowsour.2020.228794.
Tian Z Y, Chen Y J, et al., Boosting the rate capability and working lifespan of K/Co co-doped Na3V2(PO4)3/C for sodium ion batteries, Ceramics International, 2021, 47, 22025-22034, https://doi.org/10.1016/j.ceramint.2021.04.222.
Jiang X M, Liu C C, et al., Constructing p-type substitution induced by Ca2+ in defective Na3V2−xCax(PO4)3/C wrapped with conductive CNTs for high-performance sodium-ion batteries, Dalton Transactions, 2022, 51, 16145–16157, https://doi.org/ 10.1039/d2dt02602c.
Li J H, Chen Y J, et al., Mechanisms and principles of Na3V2(PO4)3 modification by carbon materials, Current Opinion in Electrochemistry, 2023, 37, 101200, https://doi.org/10.1016/j.coelec.2022.101200.
Lim S Y, Kim H, Shakoor R A, et al., Electrochemical and Thermal Properties of NASICON Structured Na3V2(PO4)3 as a Sodium Rechargeable Battery Cathode: A Combined Experimental and Theoretical Study, Journal of the Electrochemical Society, 2012, 159, A1393-A1397, DOI 10.1149/2.015209jes.
Cheng J, Chen Y J, et al., Na3V2(PO4)3/C⋅ Na3V2(PO4)2F3/C@rGO blended cathode material with elevated energy density for sodium ion batteries, Ceramics International, 2021, 47, 18065–18074, https://doi.org/10.1016/j.ceramint.2021.03.122.
Duan W, Zhu Z, Li H, et al., Na3V2(PO4)3@C core-shell nanocomposites for rechargeable sodium-ion batteries, Journal of Materials Chemistry A, 2014, 2, 8668-8675, DOI: 10.1039/c4ta00106k.
Jiang Y, Yang Z Z, et al., Nanoconfined Carbon-Coated Na3V2(PO4)3 Particles in Mesoporous Carbon Enabling Ultralong Cycle Life for Sodium-Ion Batteries, Advanced Energy Materials, 2015, 5, 1402104, https://doi.org/10.1002/aenm.201402104 .
Delmas C, Braconnier J J, Fouassier C, et al., Electrochemical intercalation of sodium in NaxCoO2 bronzes, Solid State Ionics, 1981, 3, 165-169, https://doi.org/10.1016/0167-2738(81)90076-X.
Keller M, Buchholz D, Passerini S. Layered Na-Ion Cathodes with Outstanding Performance Resulting from the Synergetic Effect of Mixed P- and O-Type Phases, Advanced Energy Materials, 2016, 6, 1501555-1501565, https://doi.org/10.1002/aenm.201501555.
Li G R, Song J, Pan G L, et al., Highly Pt-like electrocatalytic activity of transition metal nitrides for dye-sensitized solar cells, Energy & Environmental Science, 2011, 4, 1680-1683, https://doi.org/10.1039/C1EE01105G.
Du K, Guo H, Hu G, et al.. Na3V2(PO4)3 as cathode material for hybrid lithium ion batteries, Journal of Power Sources, 2013, 223, 284-288, http://dx.doi.org/10.1016/j.jpowsour.2012.09.069.
Li G, Jiang D, Wang H, et al.. Glucose-assisted synthesis of Na3V2(PO4)3/C composite as an electrode material for high-performance sodium-ion batteries, Journal of Power Sources, 2014, 265, 325-334, http://dx.doi.org/10.1016/j.jpowsour.2014.04.054.
Su R Y, Zhu W K, et al.. Mnx+ Substitution to Improve Na3V2(PO4)2F3-Based Electrodes for Sodium-Ion Battery Cathode, Molecules, 2023, 28, 1409, https://doi.org/10.3390/molecules28031409.
DOI: https://doi.org/10.33142/rams.v5i1.11757
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Jiayu LI
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.