Research and Application of Materials Science

Research Progress on Ionic Erosion of Steel-reinforced Concrete Structures under Marine Environments

FANLei (School of Civil Engineering and Architecture, Zhejiang University of Science & Technology;Zhejiang- Singapore Joint Laboratory for Urban Renewal and Future City), ZHENGJinhao (School of Civil Engineering and Architecture, Zhejiang University of Science & Technology;Zhejiang- Singapore Joint Laboratory for Urban Renewal and Future City), WUChengtao (School of Civil Engineering and Architecture, Zhejiang University of Science & Technology;Zhejiang- Singapore Joint Laboratory for Urban Renewal and Future City)

Abstract


As one of the most widely used structural forms in the world, reinforced concrete structures have been widely used in various infrastructure construction. However, the corrosion of steel bars in concrete often leads to durability failure of reinforced concrete structures, leaving the structure unable to meet the requirements of design life. In reinforced concrete structures in marine environments, corrosion and degradation of steel bars caused by chloride ions is one of the important reasons for the durability failure of the structures. In this paper, the chloride ion erosion mechanism of concrete, steel bars and concrete-steel transition zone is introduced, the influence mechanism of different marine environmental factors on chloride ion erosion is clarified.

Keywords


Steel-Reinforced Concrete, Ionic erosion, Marine Environments, Transition Zone, Durability

References


L. G. Zheng, H. Y. Yang. Effect of organic rust inhibitors on the corrosion behaviour of steel reinforcement in concrete specimens immersed in saturated NaCl solution [J]. ACTA PHYSICO-CHIMICA SINICA, 2010,26(09):2354-2360.

C. Q. Li, R. E. Melchers. Time-dependent risk assessment of structural deterioration caused by reinforcement corrosion[J]. ACI STRUCT J, 2005,102(5):754.

J. X. Gong, G. F. Zhao. Advances in the study of durability of reinforced concrete structures[J]. INDUSTRY BUILDING, 2000,30(5): 1-5.

Y. P. Song, L. Y. Song, G. F. Zhao. Factors affecting corrosion and approaches for improving durability of ocean reinforced concrete structures[J]. OCEAN ENG, 2004,31(5/6):779-789.

X. Shi, N. Xie, K. Fortune, et al. Durability of steel reinforced concrete in chloride environments: An overview[J]. CONSTR BUILD MATER, 2012(30):125-138.

A. Pachón-Montano, J. Sánchez-Montero, C. Andrade, et al. Threshold concentration of chlorides in concrete for stainless steel reinforcement: Classic austenitic and new duplex stainless steel[J]. CONSTR BUILD MATER, 2018(186):495-502.

H. W. Song, H. B. Shim, A. Petcherdchoo, et al. Service life prediction of repaired concrete structures under chloride environment using finite difference method[J]. CEMENT CONCRETE COMP, 2009,31(2):120-127.

H. Yu, B. Da, H. Ma, et al. Service life prediction of coral aggregate concrete structure under island reef environment[J]. CONSTR BUILD MATER, 2020(246):118390.

R. D. HOOTON, P. F. MCGRATH. Issues related to recent developments in service life specifications for concrete structures [C].Saint Remy Les Chev reuse: RILEM, 1997.

Q. Yuan. Basic research on experimental methods for chloride transport in cementitious materials[D]. Central South University, 2009.

Y. Gao, J. Zhang, S. Zhang, et al. Probability distribution of convection zone depth of chloride in concrete in a marine tidal environment[J]. CONSTR BUILD MATER, 2017(140): 485-495.

J. Crack. The mathematics of diffusion, 2nd ed [D]. London: Oxford Univ. Press, 1975.

M. Collepardi, A. Marcialis, R. Turriziani. Penetration of chloride ions into cement pastes and concretes[J]. J AM CERAM SOC, 1972,55(10):534-535.

L. Tang, J. Gulikers. On the mathematics of time-dependent apparent chloride diffusion coefficient in concrete[J]. CEMENT CONCRETE RES, 2007,37(4):589-595.

Martın-Pérez, Beatriz. Service life modelling of RC highway structures exposed to chlorides[D]. Ontario: University of Toronto, 1995.

J. Li, J. Xiong, Z. Fan, et al. Mechanistic study of macrocell effect on corrosion initiation and propagation of reinforcement in submarine immersed tunnel[J]. CEMENT CONCRETE COMP, 2023(136):104890.

J. Němeěcek, J. Kruis, T. Koudelka, et al. Simulation of chloride migration in reinforced concrete[J]. APPL MATH COMPUT, 2018(319):575-585.

H. Chang. Chloride binding capacity of pastes influenced by carbonation under three conditions[J]. CEMENT CONCRETE COMP, 2017(84):1-9.

P. Garcés, E. Saura, C. A. Zornoza. Influence of pH on the nitrite corrosion inhibition of reinforcing steel in simulated concrete pore solution[J]. CORROS SCI, 2011,53(12):10-15.

J. Wei, J. H Dong, W. Ke. Corrosion resistant performance of a chemical quenched rebar in concrete[J]. CONSTR BUILD MATER, 2010,25(3):22-25.

Sun Yisheng. Non-destructive quantitative detection test of internal reinforcement corrosion of bridge based on two-electrode potential by transient electromagnetic imaging[D]. Chongqing: Chongqing Jiaotong University, 2013.

M. James, Gaidis. Chemistry of corrosion inhibitors[J]. CEMENT CONCRETE COMP, 2004,26(3):30-33.

P. Ghods, O. B. Isgor, G. McRae, et al. The effect of concrete pore solution composition on the quality of passive oxide films on black steel reinforcement[J]. CEMENT CONCRETE COMP, 2008,31(1):15-18.

Y. S. Ji, W. Si, M. Song, et al. Analysis of corrosion layer development and fine structure of steel reinforcement in concrete[J]. Journal of Building Structures, 2009,30(S2):303-308.

T. U. Mohammed, H. Hamada, A. Hasnat, et al. Corrosion of steel bars in concrete with the variation of microstructure of steel-concrete interface[J]. J ADV CONCR TECHNOL, 2015,13(4):230-240.

A. Nasser, A. Clément, S. Laurens, et al. Influence of steel–concrete interface condition on galvanic corrosion currents in carbonated concrete[J]. CORROS SCI, 2010,52(9):2878-2890.

L. Shen, L. Struble, D. Lange. Modeling dynamic segregation of self-consolidating concrete[J]. ACI MATER J, 2009,106(4):375.

L. Shen, L. Struble, D. Lange. Modeling static segregation of self-consolidating concrete[J]. ACI MATER J, 2009,106(4):367.

Y. Cai, W. L. Zhang, L. W. Yu, et al. Characteristics of the steel-concrete interface and their effect on the corrosion of steel bars in concrete[J]. CONSTR BUILD MATER, 2020(253):119162.

U. M. Angst, M. R. Geiker, A. Michel, et al. The steel-concrete interface[J]. MATER STRUCT, 2017,50(2):143-167.

A. Kenny, A. Katz. Statistical relationship between mix properties and the interfacial transition zone around embedded rebar[J]. CEMENT CONCRETE COMP, 2015,(60):82-91.

A. T. Horne, I. G. Richardson, R. M. D. Brydson. Quantitative analysis of the microstructure of interfaces in steel reinforced concrete[J]. CEMENT CONCRETE RES, 2007,37(12):1613-1623.

Zhang Zhidong, Angst Ueli, Michel Alexander, Jensen Mads A. An image-based local homogenization method to model mass transport at the steel-concrete interface[C]. Leeds: Sixth International Conference on the Durability of Concrete Structures, 2018.

D. Manmohan, P. K. Mehta. Study on blended portland cements containing santirin earth[J]. CEMENT CONCRETE RES, 1981,11(4):575-579.

Y. Sakai. Relationship between pore structure and chloride diffusion in cementitious materials[J]. CONSTR BUILD MATER, 2019,229:116868.

R. ZHAO, Z. Q. JIN, J. R. CAO, et al. Numercial simulation of chloride ions transportation considering temperature and humidity in marine environment. The Ocean Engineering, 2018,36(1):99-106.

J. O. UKPATA, P. A. M. BASHEER, L BLACK. Slag hydration and chloride binding in slag cements exposed to a combined chloride-sulphate solution[J]. CONSTR BUILD MATER, 2019(195):238-248.

D. K. PANESAR, S. E. CHIDIAC. Effect of cold temperature on the chloride-binding capacity of cement[J]. J COLD REG ENG, 2011,25(4):133-144.

W. SHAO, D. D SHI, J. P. LI. Effect of environment temperature on chloride diffusion in RC pipe piles[J]. Journal of Civil and Environmental Engineering, 2019,41(2):12-19.

H. S. SO, S. H. CHOI, K. S. SEO, et al. The properties of chloride ion diffusion of concrete under high temperature conditions, with implications for the storage of spent nuclear fuel in concrete casks[J]. KSCE J CIV ENG, 2014,18(7):2227-2233.

M. Isteita, Y. P. Xi. The effect of temperature variation on chloride penetration in concrete[J]. CONSTR BUILD MATER, 2017(156):73-82.

M. Zhou, J. C. Liao, L. An. Effect of multiple environmental factors on the adhesion and diffusion behaviors of chlorides in a bridge with coastal exposure:long-term experimental study[J]. J BRIDGE ENG, 2020,25(10):04020081.

B. Chen, R. Ghani, A. Azaqpur. Exposure duration and sub-zero temperature effects on concrete chloride diffusion decay index and binding[J]. CONSTR BUILD MATER, 2021(313):125368.

N. D. Pham, Y. Kuriyama, N. Y. Kasai, et al. A new analysis of wind on chloride deposition for long-term aerosol chloride deposition monitoring with weekly sampling frequency[J]. ATMOS ENVIRON, 2019(198):46-54.

W. Bruch, J. Piazzola, H. Branger, et al. Sea-spray-generation dependence on wind and wave combinations:a laboratory study[J]. BOUND-LAY METEOROL, 2021,180(3):477-505.

M. A. Thomas, A. Devasthale, M. Kahnert. Marine aerosol properties over the Southern Ocean in relation to the wintertime meteorological conditions[J]. ATMOS CHEM PHYS, 2022,22(1):119-137.

T. K. Kim, S. J. Choi, J. H. Choi, et al. Prediction of chloride penetration depth rate and diffusion coefficient rate of concrete from curing condition variations due to climate change effect[J]. INT J CONCR STRUCT M, 2019,13(1):1-13.

G. R. Meira, C. Andrade, C. Alonso, et al. Salinity of marine aerosols in a Brazilian coastal area-influence of wind regime[J]. ATMOS ENVIRON, 2007,41(38):8431-8441.

I. S. Oslakovic, D. Bjegovic, D. Mikulic. Evaluation of service life design models on concrete structures exposed to marine environment[J]. MATER STRUCT, 2010,43(10):1397-1412.

M. E. R. Gustafsson, L. G. Franzen. Dry deposition and concentration of marine aerosols in a coastal area, SW Sweden[J]. ATMOS ENVIRON, 1996,30(6):977-989.

R. J. Santucci, R. S. Davis, C. E. Sanders. Atmospheric corrosion severity and the precision of salt deposition measurements made by the wet candle method[J]. CORROS ENG SCI TECHN, 2022,57(2):147-158.

R. Meirag, C. Andrade, I. J. Padaratz, et al. Chloride penetration into concrete structures in the marine atmosphere zone-Relationship between deposition of chlorides on the wet candle and chlorides accumulated into concrete[J]. CEMENT CONCRETE COMP, 2007,29(9):667-676.

T. Uomoto, T. Ishibashi, Y. Npbuta, et al. Standard specifications for concrete structures—2007 by Japan society of civil engineers[J]. CONCR J, 2008,46(7):3-14.

Z. J. Tang, K. X. Liao, X. L. Kong, et al. Diffusion of chloride ion into containment concrete under coastal environment[J]. CONCRETE, 2015(5):66-69.

N. Nosratzehi, M. Miri. Experimental investigation on chloride diffusion coefficient of self-compacting concrete in the Oman Sea[J]. PERIOD POLYTECH-CIV, 2020(11):647-657.

Rasheeduzzafar, S. S. Al-Saadoun, A. S. Al-Fahtani, et al. Effect of tricalcium alumina content of cement on corrosion of reinforcing steel in concrete[J]. CEMENT CONCRETE RES, 1990,20(5):723-738.

G. Blunk, P. Gunkel, H. G Smolczyk. On the distribution of chloride between the hardening cement pastes and its pore solutions. Proceedings of the 8th international congress on the chemistry of cement[J]. MATERIA-BRAZIL, 1986(4):85-90.

C. Arya, N. R. Buenfeld, J. B. Newman. Factors influencing chloride binding in concrete[J]. CEMENT CONCRETE RES, 1990,20(2):291-300.

Rasheeduzzafar. Influence of cement composition on concrete durability[J]. ACI MATER J, 1992,89(6):574-585.

A. K. Suryavanshi, J. D. Scantlebury, S. B. Lyon. The binding of chloride ions by sulphate resistant cement[J]. CEMENT CONCRETE RES, 1995,25(3):581-592.

Zibara Hassan. Binding of external chloride by cement pastes[D]. Department of building materials Ontario:University of Toronto,2001.

A. K. Suryavanshi, J. D. Scantlebury, S. B. Lyon. Mechanism of Friedel’s salt formation in cements rich in tri-calcium aluminate[J]. CEMENT CONCRETE RES, 1996,26(5):717-727.

H. Justnes. A review of chloride binding in cementitious systems[J]. NORD CONCR RES, 2000(21):1-16.

V. S. Ramachandran. Possible states of chloride in the hydration of tricalcium silicate in the presence of calcium chloride[J]. MATER STRUCT, 1971,4(1),3-12.

L. Tang, L. O. Nilsson. Chloride binding capacity and binding isotherms of OPC pastes and mortars[J]. CEMENT CONCRETE RES, 1993,23(2):247-253.

J. J. Beaudoin, V. S. Ramachandran, R. F. Feldman. Interaction of chloride and C-S-H[J]. CEMENT CONCRETE RES, 1990,20(6):875-883.

P. Lambert, C. L. Page, N. R. Short. Pore solution chemistry of the hydrated system tricalcium silicate/sodium chloride/water[J]. CEMENT CONCRETE RES, 1985(15):675-680.

Cui Ling. Invasion mechanism and distribution development of chloride ions in concrete structures under marine environment[D]. Qingdao: Qingdao Technological University, 2010.

Y. S. Ji. Whole life processes and projections for reinforced concrete[D]. Beijing:China Railway Press, 2011.

K. Venu, K. Balakrishnan, K. S Rajagopalan. A potentiokinetic polarization study of the behaviour of steel in NaOH - NaCl system[J]. CORROS SCI, 1965(5):59-69.

P. Ghods, O B Isgor, G. McRae, et al. The effect of concrete pore solution composition on the quality of passive oxide films on black steel reinforcement[J]. CEMENT CONCRETE COMP, 2009,31(1):2-11.

L. Li, A. A. Sagüés. Chloride corrosion threshold of reinforcing steel in alkaline solutions- open-circuit immersion tests[J]. CORROSION-US, 2001(57):19-28.

Y. T. Tan, S. L. Wijesinghe, D. J. Blackwood. The inhibitive effect of bicarbonate and carbonate ions on carbon steel in simulated concrete pore solution[J]. CORROS SCI, 2014(88):152-160.

R. B. Figueira, A. Sadovski, A. P. Melo, et al. Chloride threshold value to initiate reinforcement corrosion in simulated concrete pore solutions: The influence of surface finishing and pH[J]. CONSTR BUILD MATER, 2017(141):183-200.

Q. Q. Zhang, W. Sun, J. P. Liu. Analysis of factors affecting critical chloride ion concentration in concrete simulation fluids[J]. Journal of Southeast University, 2010,40:177-181.




DOI: https://doi.org/10.33142/rams.v6i2.14582

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Lei FAN, Jinhao ZHENG, Chengtao WU

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.