Research and Application of Materials Science

Testing Method of Ion Corrosion of Reinforced Concrete and its Interface Optimization in the Marine Environment

FANLei (School of Civil Engineering and Architecture, Zhejiang University of Science & Technology;Zhejiang- Singapore Joint Laboratory for Urban Renewal and Future City), ZHENGJinhao (School of Civil Engineering and Architecture, Zhejiang University of Science & Technology;Zhejiang- Singapore Joint Laboratory for Urban Renewal and Future City), WUChengtao (School of Civil Engineering and Architecture, Zhejiang University of Science & Technology;Zhejiang- Singapore Joint Laboratory for Urban Renewal and Future City)

Abstract


With the continuous improvement of the strategic position of marine resources in the world, improving the durability of marine engineering and increasing its service life has become an unavoidable topic. In the future, the development of protection optimization methods should be more diversified and integrated. In this paper, the testing method of ion corrosion of reinforced concrete and its interface optimization in the marine environment were investigated. It provides more possibilities for scientific research and technological innovation.

Keywords


Ionic erosion; Testing method; Marine Environments; interface optimization; Reinforced concrete

References


C. Alonso, C. Andrade, J. A. González. Relation between concrete resistivity and corrosion rate of the reinforcements in carbonated mortar made with several cement types[J]. CEMENT CONCRETE RES, 1988(18):687-698.

H. Yalcyn, M. Ergun. The Prediction of corrosion Rates of Reinforcing Steels in Concrete[J]. CEMENT CONCRETE RES, 1996(26):1593-1599.

M. Otieno, H. Beushausen, M. Alexander. Resistivity-based chloride-induced corrosion rate prediction models and hypothetical framework for interpretation of resistivity measurements in cracked RC structures[J]. MATER STRUCT, 2015,49(6):2349-2366.

M. Otieno, H. Beushausen, M. Alexander. Chloride-induced corrosion of steel in cracked concrete—Part II: corrosion rate prediction models[J]. CEMENT CONCRETE RES, 2016(79):386-394.

G. Nossoni, R. S. Harichandran. Electrochemical-mechanistic model for concrete cover cracking due to corrosion initiated by chloride diffusion[J]. J MATER CIVIL ENG, 2014,26(6):4014001.

B. Zhou, X. Gu, H. Guo, et al. Polarization behavior of activated reinforcing steel bars in concrete under chloride environments[J]. CONSTR BUILD MATER, 2018(164):877-887.

C. Argiz, M. A. Sanjuán, P. C. Borges, et al. Modeling of corrosion rate and resistivity of steel reinforcement of calcium aluminate cement mortar[J]. ADV CIV ENG, 2018(11):1-9.

T. Liu, R. W. Weyers. Modeling the dynamic corrosion process in chloride contaminated concrete structures[J]. CEMENT CONCRETE RES, 1998,28(3):365-379.

A. Köliö, T. A. Pakkala, H. Hohti, et al. The corrosion rate in reinforced concrete facades exposed to outdoor environment[J]. MATER STRUCT, 2016,50(1):22-25.

[10] ACI Committee 201. Guide to Durable Concrete [R]. Farmington Hills: American Concrete Institute, 2016.

C. Andrade, C. Alonso, J. A. Gonzalez. Some laboratory experiments on the inhibitor effect of sodium nitrite on reinforcement corrosion[J]. CEMENT CONCRETE AGGR, 1986,8(2):110-115.

V.T. Ngala, C.L. Page, M.M. Page. Corrosion inhibitor systems for remedial treatment of reinforced concrete. Part 2: sodium monofluorophosphate[J]. CORROS SCI, 2003, 45(7):55-58.

M. M. Page, V. T. Ngala, C. L. Page. Corrosion inhibitors in concrete repair systems[J]. MAG CONCRETE RES, 2000,52(2):25.

C. Alonso, C. Andrade, C. Argiz, et al. Na2PO3F as inhibitor of corroding reinforcement incarbonated concrete[J]. CEMENT CONCRETE RES, 1996,26(3):405-415.

C. M. Hansson, L. Mammoliti, B. B. Hope. Corrosion inhibitors in concrete—part I: the principles[J]. CEMENT CONCRETE RES, 1998,28(12):33-37.

Y. B. Gao, J. Hu, Q. Liu, et al. Application and prospect of reinforcement rust inhibitors[J]. Journal of Xiamen University, 2015,54(05):713-720.

W. Morris, A. Vico, M. Vazquez. Corrosion of reinforcing steel by means of concrete resistivity measurements[J]. CORROS SCI, 2002(44):81-99.

H. E. Jamil, A. Shriri, R. Boulif, et al. Corrosion behaviour of reinforcing steel exposed to an amino alcohol based corrosion inhibitor[J]. CEMENT CONCRETE COMP,2004,27(6):33-38.

Maeder U. A New Class of Corrosion Inhibitors for Reinforced Concrete [J]. Special Publication, 1996, 163: 215-232.

J. Tritthart. Transport of a surface-applied corrosion inhibitor in cement paste and concrete[J]. CEMENT CONCRETE RES, 2003,33(6):25-29.

L. Betrolini, B. Elsener, P. Pediferri, et al. Corrosion of steel in concrete: prevention, diagnosis, repair[M]. Hoboken:John Wiley &Sons, 2013.

Y. Li, Z. F. Li. Cathodic protection for offshore platforms[J]. Shipbuilding of China, 2002,43(10):162-164.

X. Y. Xiong, T. Yan, C. B. Xu, et al. Development and application of cathodic protection monitoring system for offshore platforms[J]. Journal of Tropical Oceanography, 2003(1):70-75.

L. Wu, C. Y. Wu, Z. Y. Ni. Practice of research on the design and application of cathodic protection engineering of industrial steel structures in offshore ports[C]. Beijing: CHINESE SCI BULL, 2006.

P. F. Yin, W. Zhang, Z. K. Xu, et al. Impressed current cathodic protection technology for jacket platforms[J]. Corrosion & Protection, 2012,33(S2):18-22.

Y. Luan, C. J. Ma, J. P. Hu. Impressed current cathodic protection technology for jack-up platforms[J]. Total Corrosion Control, 2015,29(10):33-37.

S. X. Hu. Cathodic Protection Brochure[D]. Beijing:Chemical Industry Press, 1999.

R. B. Teel, D. B. Anderson. The effect of iron in galvanic zinc anodes in sea water[J]. CORROS SCI, 1956(12):343-349.

H.H. Bibikov, E. R. Ryublinsky, B. Povarova. Electrochemical protection of seagoing vessels[J]. National Defense Industry Press, 1975(22):15.

K. P. Fischer. Field testing of CP current requirements at depth down to 1300 mon the northern Norwegian continental shelf from 63°to 67°N [C]. Corrosion, Houston: NACE, 1999.

A.M. Beccaria, P. Fiordiponti, D. Mattongno. The effect of hydrostatic pressure on the corrosion of nickel in slightly alkaline solutions containing Cl- ions[J]. CORROS SCI, 1989,29(4):403-413.

T. Alastair. Cathodic protection at a simulated depth of 2500m[J]. CORROS-US, 2000(21):134.

M. Funahashi, T. Sirola, D. Mcintaggart. Cost effective cathodic protection system for concrete structures[J]. MATER PERFORMANCE, 2014,53(11):32-37.

L. Raki, J. Beaudoin, R. Alizadeh, et al. Cement and Concrete Nanoscience and Nanotechnology[J]. MATER, 2010,3(2):918-42.

H. Du, H. J. Gao, S. D. Pang. Improvement in concrete resistance against water and chloride ingress by adding graphene nanoplatelet[J]. CEMENT CONCRETE RES, 2016(83):114-23.

H. Du, S. D. Pang. Enhancement of barrier properties of cement mortar with graphene nanoplatelet[J]. CEMENT CONCRETE RES, 2015(76):10-19.

R. J. Gao. In-situ polymerization of GO-PCE and its effect on the properties of cement-based materials and its mechanism[D]. Beijing:China Academy of Building Materials Science, 2020.

A. M. Said, M. S. Zeidan, M. T. Bassuoni, et al. Properties of concrete incorporating nano-silica[J]. CONSTR BUILD MATER, 2012(36):838-844.

L. Feng, P. Zhao, Z. Wang, et al. Improvement of mechanical properties and chloride ion penetration resistance of cement pastes with the addition of pre-dispersed silica fume[J]. CONSTR BUILD MATER, 2018(182):483-492.

H. Chen, P. Feng, Y. Du, et al. The effect of superhydrophobic nano-silica particles on the transport and mechanical properties of hardened cement pastes[J]. CONSTR BUILD MATER, 2018(182):620-628.

D. Wang, P. Yang, P. Hou, et al. Effect of SiO2 oligomers on water absorption of cementitious materials[J]. CEMENT CONCRETE RES, 2016(87):22-30.

Li Guhua. The effect of nanomaterials on the durability of concrete[D]. Chongqing: Southwest Jiaotong University, 2006. (in Chinese)

Gu Yue. Study on the properties of core-shell nano-SiO2 modified cementitious materials[D]. Nanjing:Southeast University, 2017. (in Chinese)

A. Maryoto, G. B. Sthenly, S. H. N. Intang, R. Setijadi. Effect of calcium stearate in the mechanical and physical properties of concrete with PCC and Fly ash as binders[J]. MATER, 2020,13(6):1394.

A. Maryoto, B. S. Gan, N. I. S. Hermanto, et al. CORROS-US resistance of self-compacting concrete containing calcium stearate[J]. J ENG SCI TECHNOL, 2018(13):3263-3276.

Qian Bei. Research on corrosion protection technology in steel structure splash zone and corrosion inhibitor under dry and wet alternation[D]. Qingdao: Chinese Academy of Sciences, 2014.

A. Maryoto. Resistance of Concrete with Calcium Stearate Due to Chloride Attack Tested by Accelerated[J]. CORROS-US, 2017(171):511-516.

A. Maryoto, B. S. Gan, H. Aylie. Reduction of chloride ion ingress into reinforced concrete using a hydrophobic additive material[J]. J TEKNOL, 2017, 79(2):45-48.

A. Maryoto. Improving Microstructures of Concrete Using Ca(C18H35O2)2[J]. Procedia Engineering, 2015(125):631-637.

He Kui. Research on organic functional materials for concrete in harsh environments and their protection mechanisms[D]. Hangzhou: Zhejiang University, 2014.

I. Flores-Vivian, V. Hejazi, M. I. Kozhukhova, et al. Self-assembling particle-siloxane coatings for superhydrophobic concrete[J]. ACS APPL MATER INTER, 2013,5(24):13284-13294.

B. Zhang, Q. Li, X. Niu, et al. Influence of a novel hydrophobic agent on freeze–thaw resistance and microstructure of concrete[J]. CONSTR BUILD MATER, 2021(269):121294.

J. Horvath, H. H. Uhlig. Critical potentials for pitting corrosion of Ni, Cr-Ni, Cr-Fe, and related stainless steels[J]. J ELECTROCHEM SOC, 1986,115(8):791-794.

S. Lameche, R. Nedjar, H. Rebbah, et al. CORROS-US and passivation behaviour of three stainless steels in different chloride concentration[J]. ASIAN J CHEM, 2008,20(4):2544.

J. Shu, H. Bi, X. Li, et al. The effect of copper and molybdenum on pitting corrosion and stress CORROS-US cracking behavior of ultra-pure ferritic stainless steels[J]. CORROS SCI, 2012(57):89-98.

G. P. Halada, D. Kim, C. R. Clayton. Influence of nitrogen on electrochemical passivation of high-nickel stainless steels and thin molybdenum-nickel films[J]. CORROS-US, 1996,52(1):36-45.

A. A. Hermas, K. Ogura, S. Takagi, et al. Effects of alloying additions on corrosion and passivation behaviors of type 304 stainless steel[J]. CORROS-US, 1995,51(1):3-10.

K. Yoshioka, S. Suzuki, N. Kinoshita, et al. ultra-low C and N high chromium ferritic stainless steel[J]. KAWASKTA STEEL TECH REP, 1986(14):101-112.




DOI: https://doi.org/10.33142/rams.v6i2.14588

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Lei FAN, Jinhao ZHENG, Chengtao WU

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.