Research and Application of Materials Science

Recent Progress on Catalysts towards Electrocatalytic Nitrogen Reduction Reaction

YAOXue, ZHAORui, JIZhengtong, LANGXingyou, ZHUYongfu, JIANGQing

Abstract


The energy-intensive Haber-Bosch process currently dominants the production of ammonia (NH3), an indispensable chemical for humans. For the sustainable development of society, highly efficient and green strategies to convert nitrogen (N2) to NH3 are urgently required. Electrocatalytic N2 reduction reaction (eNRR) is universally regarded as a promising strategy owing to the mild operating conditions and renewable energy supply. The key for eNRR is the high-performance catalysts, which activate the inert N-N triple bond and thus decrease the energy barrier. Herein, the recent theoretical and experimental progress on eNRR catalysts at room temperature and ambient pressure is summarized, aiming to provide a reference for future design of high-performance eNRR catalysts.

Keywords


electrocatalysis; nitrogen reduction reaction; elemental catalysts; compound catalysts; single-atom catalysts

Full Text:

PDF

References


S.L. Foster, S.I.P. Bakovic, R.D. Duda, S. Maheshwari, R.D. Milton, S.D. Minteer, M.J. Janik, J.N. Renner, L.F. Greenlee, Catalysts for nitrogen reduction to ammonia, Nature Catalysis 1(7) (2018) 490.

J. Guo, P. Chen, Catalyst: NH3 as an energy carrier, Chem 3(5) (2017) 709-712.

C.H. Christensen, T. Johannessen, R.Z. Sørensen, J.K. Nørskov, Towards an ammonia-mediated hydrogen economy?, Catal. Today 111(1-2) (2006) 140-144.

S.J. Li, D. Bao, M.M. Shi, B.R. Wulan, J.M. Yan, Q. Jiang, Amorphizing of Au nanoparticles by CeOx–RGO hybrid support towards highly efficient electrocatalyst for N2 reduction under ambient conditions, Adv. Mater. 29(33) (2017) 1700001.

M.M. Shi, D. Bao, S.J. Li, B.R. Wulan, J.M. Yan, Q. Jiang, Anchoring PdCu amorphous nanocluster on graphene for electrochemical reduction of N2 to NH3 under ambient conditions in aqueous solution, Advanced Energy Materials 8(21) (2018) 1800124.

Y. Ashida, K. Arashiba, K. Nakajima, Y. Nishibayashi, Molybdenum-catalysed ammonia production with samarium diiodide and alcohols or water, Nature 568(7753) (2019) 536.

R.D. Milton, R. Cai, S. Abdellaoui, D. Leech, A.L. De Lacey, M. Pita, S.D. Minteer, Bioelectrochemical Haber–Bosch Process: An Ammonia‐Producing H2/N2 Fuel Cell, Angew. Chem. Int. Ed. 56(10) (2017) 2680-2683.

D. Bao, Q. Zhang, F.L. Meng, H.X. Zhong, M.M. Shi, Y. Zhang, J.M. Yan, Q. Jiang, X.B. Zhang, Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle, Adv. Mater. 29(3) (2017) 1604799.

P.J. Chirik, Nitrogen fixation: one electron at a time, Nature chemistry 1(7) (2009) 520.

Z.W. Chen, J.M. Yan, Q. Jiang, Single or Double: Which Is the Altar of Atomic Catalysts for Nitrogen Reduction Reaction?, Small Methods (2018) 1800291.

X. Cui, C. Tang, Q. Zhang, A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions, Advanced Energy Materials 8(22) (2018) 1800369.

B.H. Suryanto, H.-L. Du, D. Wang, J. Chen, A.N. Simonov, D.R. MacFarlane, Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia, Nature Catalysis (2019) 1.

B.K. Burgess, D.J. Lowe, Mechanism of molybdenum nitrogenase, Chem. Rev. 96(7) (1996) 2983-3012.

R.R. Eady, Structure− function relationships of alternative nitrogenases, Chem. Rev. 96(7) (1996) 3013-3030.

Y. Wan, J. Xu, R. Lv, Heterogeneous electrocatalysts design for nitrogen reduction reaction under ambient conditions, Mater. Today (2019).

X. Liu, Y. Jiao, Y. Zheng, M. Jaroniec, S.-Z. Qiao, Building Up a Picture of the Electrocatalytic Nitrogen Reduction Activity of Transition Metal Single-Atom Catalysts, J. Am. Chem. Soc. 141(24) (2019) 9664-9672.

X. Guo, H. Du, F. Qu, J. Li, Recent progress in electrocatalytic nitrogen reduction, Journal of Materials Chemistry A 7(8) (2019) 3531-3543.

H. Zhou, J. Li, Z. Wen, Q. Jiang, Tuning catalytic activity of single Mo atom supported on graphene for nitrogen reduction via Se atom doping, PCCP (2019).

Y. Zhang, H. Du, Y. Ma, L. Ji, H. Guo, Z. Tian, H. Chen, H. Huang, G. Cui, A.M. Asiri, Hexagonal boron nitride nanosheet for effective ambient N 2 fixation to NH 3, Nano Research 12(4) (2019) 919-924.

J. Zhao, X. Ren, X. Li, D. Fan, X. Sun, H. Ma, Q. Wei, D. Wu, High-performance N 2-to-NH 3 fixation by a metal-free electrocatalyst, Nanoscale 11(10) (2019) 4231-4235.

X. Li, X. Ren, X. Liu, J. Zhao, X. Sun, Y. Zhang, X. Kuang, T. Yan, Q. Wei, D. Wu, A MoS 2 nanosheet–reduced graphene oxide hybrid: an efficient electrocatalyst for electrocatalytic N 2 reduction to NH 3 under ambient conditions, Journal of Materials Chemistry A 7(6) (2019) 2524-2528.

Y. Liu, M. Han, Q. Xiong, S. Zhang, C. Zhao, W. Gong, G. Wang, H. Zhang, H. Zhao, Dramatically Enhanced Ambient Ammonia Electrosynthesis Performance by In‐Operando Created Li–S Interactions on MoS2 Electrocatalyst, Advanced Energy Materials (2019) 1803935.

A.R. Singh, B.A. Rohr, J.A. Schwalbe, M. Cargnello, K. Chan, T.F. Jaramillo, I. Chorkendorff, J.K. Nørskov, Electrochemical Ammonia Synthesis The Selectivity Challenge, ACS Publications, 2016.

Y. Huang, T. Yang, L. Yang, R. Liu, G. Zhang, J. Jiang, Y. Luo, P. Lian, S. Tang, Graphene―Boron Nitride Hybrid Supported Single Mo Atom Electrocatalysts for Efficient Nitrogen Reduction Reaction, Journal of Materials Chemistry A (2019).

L. Xia, J. Yang, H. Wang, R. Zhao, H. Chen, W. Fang, A.M. Asiri, F. Xie, G. Cui, X. Sun, Sulfur-doped graphene for efficient electrocatalytic N 2-to-NH 3 fixation, Chem. Commun. 55(23) (2019) 3371-3374.

Y. Ying, K. Fan, X. Luo, H. Huang, Predicting two-dimensional pentagonal transition metal monophosphides for efficient electrocatalytic nitrogen reduction, Journal of Materials Chemistry A 7(18) (2019) 11444-11451.

Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov, T.F. Jaramillo, Combining theory and experiment in electrocatalysis: Insights into materials design, Science 355(6321) (2017) eaad4998.

Z.W. Chen, W. Gao, W.T. Zheng, Q. Jiang, Steric Hindrance in Sulfur Vacancy of Monolayer MoS2 Boosts Electrochemical Reduction of Carbon Monoxide to Methane, ChemSusChem 11(9) (2018) 1455-1459.

C.-X. Zhao, G.-X. Zhang, W. Gao, Q. Jiang, Single metal atoms regulated flexibly by a 2D InSe substrate for CO 2 reduction electrocatalysts, Journal of Materials Chemistry A 7(14) (2019) 8210-8217.

F. Gao, X. Tang, H. Yi, S. Zhao, C. Li, J. Li, Y. Shi, X. Meng, A review on selective catalytic reduction of NOx by NH3 over Mn–based catalysts at low temperatures: catalysts, mechanisms, kinetics and DFT calculations, Catalysts 7(7) (2017) 199.

M. Krajčí, J. Hafner, Intermetallic compounds as selective heterogeneous catalysts: insights from DFT, ChemCatChem 8(1) (2016) 34-48.

E. Skulason, T. Bligaard, S. Gudmundsdóttir, F. Studt, J. Rossmeisl, F. Abild-Pedersen, T. Vegge, H. Jonsson, J.K. Nørskov, A theoretical evaluation of possible transition metal electro-catalysts for N 2 reduction, PCCP 14(3) (2012) 1235-1245.

E. Skúlason, V. Tripkovic, M.E. Björketun, S. Gudmundsdottir, G. Karlberg, J. Rossmeisl, T. Bligaard, H. Jónsson, J.K. Nørskov, Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations, The Journal of Physical Chemistry C 114(42) (2010) 18182-18197.

J.H. Montoya, C. Tsai, A. Vojvodic, J.K. Nørskov, The Challenge of Electrochemical Ammonia Synthesis: A New Perspective on the Role of Nitrogen Scaling Relations, Chemsuschem 8(13) (2015) 2180-2186.

D. Yang, T. Chen, Z. Wang, Electrochemical reduction of aqueous nitrogen (N 2) at a low overpotential on (110)-oriented Mo nanofilm, Journal of Materials Chemistry A 5(36) (2017) 18967-18971.

M. Nazemi, S.R. Panikkanvalappil, M.A. El-Sayed, Enhancing the rate of electrochemical nitrogen reduction reaction for ammonia synthesis under ambient conditions using hollow gold nanocages, Nano Energy 49 (2018) 316-323.

H. Huang, L. Xia, X. Shi, A.M. Asiri, X. Sun, Ag nanosheets for efficient electrocatalytic N 2 fixation to NH 3 under ambient conditions, Chem. Commun. 54(81) (2018) 11427-11430.

M.-A. Légaré, G. Bélanger-Chabot, R.D. Dewhurst, E. Welz, I. Krummenacher, B. Engels, H. Braunschweig, Nitrogen fixation and reduction at boron, Science 359(6378) (2018) 896-900.

C. Liu, Q. Li, J. Zhang, Y. Jin, D.R. MacFarlane, C. Sun, Theoretical evaluation of possible 2D boron monolayer in N2 electrochemical conversion into ammonia, The Journal of Physical Chemistry C 122(44) (2018) 25268-25273.

X. Zhang, T. Wu, H. Wang, R. Zhao, H. Chen, T. Wang, P. Wei, Y. Luo, Y. Zhang, X. Sun, Boron Nanosheet: An Elemental Two-Dimensional (2D) Material for Ambient Electrocatalytic N2-to-NH3 Fixation in Neutral Media, ACS Catalysis 9 (2019) 4609-4615.

L. Zhang, L.X. Ding, G.F. Chen, X. Yang, H. Wang, Ammonia Synthesis Under Ambient Conditions: Selective Electroreduction of Dinitrogen to Ammonia on Black Phosphorus Nanosheets, Angew. Chem. 131(9) (2019) 2638-2642.

B. Qiao, A. Wang, X. Yang, L.F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li, T. Zhang, Single-atom catalysis of CO oxidation using Pt 1/FeO x, Nature chemistry 3(8) (2011) 634.

Z.W. Chen, L.X. Chen, C. Yang, Q. Jiang, Atomic (Single, Double, and Triple Atoms) Catalysis: Frontiers, Opportunities, and Challenges, Journal of Materials Chemistry A 7(8) (2019).

Y. Wang, J. Mao, X. Meng, L. Yu, D. Deng, X. Bao, Catalysis with two-dimensional materials confining single atoms: concept, design, and applications, Chem. Rev. 119(3) (2018) 1806-1854.

A. Wang, J. Li, T. Zhang, Heterogeneous single-atom catalysis, Nature Reviews Chemistry 2(6) (2018) 65.

N. Xuan, J. Chen, J. Shi, Y. Yue, P. Zhuang, K. Ba, Y. Sun, J. Shen, Y. Liu, B. Ge, Single-Atom Electroplating on Two Dimensional Materials, Chem. Mater. 31(2) (2018) 429-435.

B.M. Hoffman, D.R. Dean, L.C. Seefeldt, Climbing nitrogenase: toward a mechanism of enzymatic nitrogen fixation, Acc. Chem. Res. 42(5) (2009) 609-619.

X.F. Li, Q.K. Li, J. Cheng, L. Liu, Q. Yan, Y. Wu, X.H. Zhang, Z.Y. Wang, Q. Qiu, Y. Luo, Conversion of Dinitrogen to Ammonia by FeN3-Embedded Graphene, J. Am. Chem. Soc. 138(28) (2016) 8706.

Z. Wei, Y. Zhang, S. Wang, C. Wang, J. Ma, Fe-doped phosphorene for the nitrogen reduction reaction, Journal of Materials Chemistry A 6(28) (2018) 13790-13796.

C. Choi, S. Back, N.-Y. Kim, J. Lim, Y.-H. Kim, Y. Jung, Suppression of hydrogen evolution reaction in electrochemical N2 reduction using single-atom catalysts: A computational guideline, ACS Catalysis 8(8) (2018) 7517-7525.

Y. Nishibayashi, Recent progress in transition-metal-catalyzed reduction of molecular dinitrogen under ambient reaction conditions, lnorg. Chem. 54(19) (2015) 9234-9247.

H. Tanaka, Y. Nishibayashi, K. Yoshizawa, Interplay between theory and experiment for ammonia synthesis catalyzed by transition metal complexes, Acc. Chem. Res. 49(5) (2016) 987-995.

J. Zhao, Z. Chen, Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: a computational study, J. Am. Chem. Soc. 139(36) (2017) 12480-12487.

C. Ling, X. Bai, Y. Ouyang, A. Du, J. Wang, Single molybdenum atom anchored on N-doped carbon as a promising electrocatalyst for nitrogen reduction into ammonia at ambient conditions, The Journal of Physical Chemistry C 122(29) (2018) 16842-16847.

P. Ou, X. Zhou, F. Meng, C. Chen, Y. Chen, J. Song, Single Molybdenum Center Supported on N-Doped Black Phosphorus as an Efficient Electrocatalyst for Nitrogen Fixation, Nanoscale (2019).

H. Yin, S.-L. Li, L.-Y. Gan, P. Wang, Pt-embedded in monolayer gC 3 N 4 as a promising single-atom electrocatalyst for ammonia synthesis, Journal of Materials Chemistry A 7(19) (2019) 11908-11914.

Z. Chen, X. Lang, Q. Jiang, Discovery of cobweb-like MoC 6 and its application for nitrogen fixation, Journal of Materials Chemistry A 6(20) (2018) 9623-9628.

X. Yu, P. Han, Z. Wei, L. Huang, Z. Gu, S. Peng, J. Ma, G. Zheng, Boron-doped graphene for electrocatalytic N2 reduction, Joule 2(8) (2018) 1610-1622.

C. Ling, X. Niu, Q. Li, A. Du, J. Wang, Metal-free single atom catalyst for N2 fixation driven by visible light, J. Am. Chem. Soc. 140(43) (2018) 14161-14168.

S. Ji, Z. Wang, J. Zhao, A boron-interstitial doped C 2 N layer as a metal-free electrocatalyst for N 2 fixation: a computational study, Journal of Materials Chemistry A 7(5) (2019) 2392-2399.

X. Lv, W. Wei, F. Li, B. Huang, Y. Dai, Metal-Free B@ g-CN: Visible/Infrared Light-Driven Single Atom Photocatalyst Enables Spontaneous Dinitrogen Reduction to Ammonia, Nano Lett. (2019).

C. Liu, Q. Li, C. Wu, J. Zhang, Y. Jin, D.R. MacFarlane, C. Sun, Single-boron catalysts for nitrogen reduction reaction, J. Am. Chem. Soc. (2019).

Y. Abghoui, A.L. Garden, J.G. Howalt, T. Vegge, E. Skúlason, Electroreduction of N2 to ammonia at ambient conditions on mononitrides of Zr, Nb, Cr, and V: A DFT guide for experiments, Acs Catalysis 6(2) (2015) 635-646.

Q. Li, L. He, C. Sun, X. Zhang, Computational study of MoN2 monolayer as electrochemical catalysts for nitrogen reduction, The Journal of Physical Chemistry C 121(49) (2017) 27563-27568.

L. Zhang, X. Ji, X. Ren, Y. Luo, X. Shi, A.M. Asiri, B. Zheng, X. Sun, Efficient electrochemical N2 reduction to NH3 on MoN nanosheets array under ambient conditions, ACS Sustainable Chemistry & Engineering 6(8) (2018) 9550-9554.

L. Zhang, X. Ji, X. Ren, Y. Ma, X. Shi, Z. Tian, A.M. Asiri, L. Chen, B. Tang, X. Sun, Electrochemical ammonia synthesis via nitrogen reduction reaction on a MoS2 catalyst: theoretical and experimental studies, Adv. Mater. 30(28) (2018) 1800191.

X. Li, T. Li, Y. Ma, Q. Wei, W. Qiu, H. Guo, X. Shi, P. Zhang, A.M. Asiri, L. Chen, Boosted Electrocatalytic N2 Reduction to NH3 by Defect‐Rich MoS2 Nanoflower, Advanced Energy Materials 8(30) (2018) 1801357.

B.H. Suryanto, D. Wang, L.M. Azofra, M. Harb, L. Cavallo, R. Jalili, D.R. Mitchell, M. Chatti, D.R. MacFarlane, MoS2 polymorphic engineering enhances selectivity in the electrochemical reduction of nitrogen to ammonia, ACS Energy Letters 4(2) (2018) 430-435.

A.-Y. Lu, H. Zhu, J. Xiao, C.-P. Chuu, Y. Han, M.-H. Chiu, C.-C. Cheng, C.-W. Yang, K.-H. Wei, Y. Yang, Janus monolayers of transition metal dichalcogenides, Nature nanotechnology 12(8) (2017) 744.

J. Zhang, S. Jia, I. Kholmanov, L. Dong, D. Er, W. Chen, H. Guo, Z. Jin, V.B. Shenoy, L. Shi, Janus monolayer transition-metal dichalcogenides, ACS nano 11(8) (2017) 8192-8198.

C. Xia, W. Xiong, J. Du, T. Wang, Y. Peng, J. Li, Universality of electronic characteristics and photocatalyst applications in the two-dimensional Janus transition metal dichalcogenides, Physical Review B 98(16) (2018) 165424.

D. Er, H. Ye, N.C. Frey, H. Kumar, J. Lou, V.B. Shenoy, Prediction of enhanced catalytic activity for hydrogen evolution reaction in Janus transition metal dichalcogenides, Nano Lett. 18(6) (2018) 3943-3949.

L. Li, B. Li, Q. Guo, B. Li, Theoretical Screening of Single-Atom Anchored MoSSe Nanosheets for Electrocatalytic N2 Fixation, The Journal of Physical Chemistry C (2019).

R. Michalsky, Y.-J. Zhang, A.J. Medford, A.A. Peterson, Departures from the adsorption energy scaling relations for metal carbide catalysts, The Journal of Physical Chemistry C 118(24) (2014) 13026-13034.

Y. Shi, Y. Yang, Y.-W. Li, H. Jiao, Mechanisms of Mo2C (101)-catalyzed furfural selective hydrodeoxygenation to 2-methylfuran from computation, ACS Catalysis 6(10) (2016) 6790-6803.

W. Liu, B. Chen, X. Duan, K.-H. Wu, W. Qi, X. Guo, B. Zhang, D. Su, Molybdenum carbide modified nanocarbon catalysts for alkane dehydrogenation reactions, ACS Catalysis 7(9) (2017) 5820-5827.

H. Cheng, L.X. Ding, G.F. Chen, L. Zhang, J. Xue, H. Wang, Molybdenum carbide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions, Adv. Mater. 30(46) (2018) 1803694.




DOI: https://doi.org/10.33142/msra.v1i2.1663

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Xue YAO, Rui ZHAO, Zhengtong JI, Xingyou LANG, Yongfu ZHU, Qing JIANG

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.