Research and Application of Materials Science

Biomass Straw Based Activated Porous Carbon Materials for High-Performance Supercapacitors

GUANMengdie, ZHANGXinle, WUYingping, SUNQihao, DONGDongqi, ZHANGXiaoling, WANGJie

Abstract


Biomass straws are often regarding as agricultural waste, usually burned off in rural areas, which results in severe resource waste and air pollution. In this work, biomass-based porous carbon material with a lamellar microstructure is obtained via simple hydrothermal and subsequent KOH activation, the optimum activate process is determined by the proportion of activator. Scanning electron microscopy (SEM) and nitrogen adsorption techniques are conducted to investigate the physical properties of the materials. Cyclic voltammetry and constant current discharge/charge in the three-electrode system and symmetrical double-layer capacitors results indicate the best electrochemical performance of SCA-1.5 electrode material, with a capacity of 250.0 F g-1 at 1.0 A g-1. And notably, high recycling stability at a high cycling rate of 1.0 A g-1 after 18,000 cycles.


Keywords


straw; biomass carbon; activation; porous lamellar structure; supercapacitor

Full Text:

PDF

References


Dhillon, R.; Wuehlisch, G. Mitigation of global warming through renewable biomass. Biomass Bioener. 2013, 48, 75-89.

Burke, A. Ultracapacitors: why, how, and where is the technology. J. Power Sources, 2000, 91, 37-50.

Xue, J. T.; Wu, Y.; Dai, Y.; Xia, Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem. Rev., 2019, 119, 5298-5415.

Yang, H.; Liu, S.; Cao, L.; Jiang, S.; Hou, H. Superlithiation of non-conductive polyimide toward high-performance lithium-ion batteries. J. Mater. Chem. A, 2018, 6, 21216-21224.

Vix-Guterl, C.; Frackowiak, E.; Jurewicz, K.; Friebe, M.; Parmentier, J.; Béguin, F. Electrochemical energy storage in ordered porous carbon materials. Carbon, 2005, 43, 1293-1302.

Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Advanced Materials for Energy Storage. Adv. Mater., 2010, 22, E28-E62.

Gu, W.; Yushin, G. Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide‐derived carbon, zeolite‐templated carbon, carbon aerogels, carbon nanotubes, onion‐like carbon, and graphene. WIRES Energy Environ. 2014, 3, 424-473.

Zhang, L.L.; Zhao X. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 2009, 38, 2520-2531.

Wang,W.; Shi,Y.; Su,Y.; Wang,Y.; Sun, H. Construction of MnO2 Nanowire for a High-Performance Lithium Ion Supercapacitor. Research and Application of Materials Science 2019, 1, 18-23.

Xu, W., Ding, Y., Yu, Y., Jiang, S., Chen, L., & Hou, H. Highly foldable PANi@ CNTs/PU dielectric composites toward thin-film capacitor application. Mater. Lett., 2017, 192, 25-28.

Wang, X.; Lu, X.; Liu, B.; Chen, D.; Tong, Y.; Shen, G. Flexible energy‐storage devices: design consideration and recent progress. Adv. Mater., 2014, 26, 4763-4782.

Zhang, Q.; Uchaker, E.; Candelaria, S. L.; Cao, G. Nanomaterials for energy conversion and storage. Chem. Soc. Rev., 2013, 42, 3127-3171.

Mao, X.; Hatton, T. A.; Rutledge, G. C. A review of electrospun carbon fibers as electrode materials for energy storage. Curr. Org. Chem., 2013, 17, 1390-1401.

Dai, L.; Chang, D. W.; Baek, J. B.; Lu, W. Carbon nanomaterials for advanced energy conversion and storage. Small 2012, 8, 1130-1166.

Ogoshi, T.; Sueto, R.; Yoshikoshi, K.; Sakata, Y.; Akine, S.; Yamagishi, T. A. Host–guest complexation of perethylated pillar [5] arene with alkanes in the crystal state. Angew. Chem. Int. Ed. 2015, 54, 9849-9852.

Hulicova-Jurcakova, D.; Seredych, M.; Lu, G. Q.; Kodiweera, N. K. A. C.; Stallworth, P. E.; Greenbaum, S.; Bandosz, T. J. Effect of surface phosphorus functionalities of activated carbons containing oxygen and nitrogen on electrochemical capacitance. Carbon, 2009, 47, 1576-1584.

Ma, H.; Zhou, Q.; Wu, M.; Zhang, M.; Yao, B.; Gao, T.; ... Shi, G. Tailoring the oxygenated groups of graphene hydrogels for high-performance supercapacitors with large areal mass loadings. J. Mater. Chem. A 2018, 6, 6587-6594.

He, S.; Chen, W. 3D graphene nanomaterials for binder-free supercapacitors: scientific design for enhanced performance. Nanoscale 2015, 7, 6957-6990.

H. Jing-quan, L. Kai-yue, Y. Yi-ying, et al. Synthesis and electrochemical performance of flexible cellulose nanofiber-carbon nanotube/natural rubber composite elastomers as supercapacitor electrodes[J]. New Carbon Mater. 2018, 33, 341-350.

Farma, R.; Deraman, M.; Awitdrus, A.; Talib, I. A.; Taer, E.; Basri, N. H.; ... Hashmi, S. A. Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors. Bioresource Technol. 2013, 132, 254-261.

Inagaki, M.; Kim, Y.A.; Endo. M. Graphene: preparation and structural perfection. J. Mater. Chem. 2011, 21, 3280-3294.

Wang, J.; Kaskel, S. KOH activation of carbon-based materials for energy storage. J. Mater. Chem., 2012, 22, 23710-23725.

Bhattacharjya, D.; Yu, J. Activated carbon made from cow dung as electrode material for electrochemical double layer capacitor. J. Power Sources, 2014, 262, 224-231.




DOI: https://doi.org/10.33142/msra.v1i2.1665

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Mengdie GUAN, Xinle ZHANG, Yingping WU, Qihao SUN, Dongqi DONG, Xiaoling ZHANG, Jie WANG

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.