Research and Application of Materials Science

Research Advances of Typical Two Dimensional Layered Thermoelectric Materials

HUANGHaihua, FANXiaofeng


Thermoelectric technologies have caught our intense attention due to their ability of heat conversion into electricity. The considerable efforts have been taken to develop and enhance thermoelectric properties of materials over the past several decades. Recently, two-dimensional layered materials are making the promise for potential applications of thermoelectric devices because of the excellent physical and structural properties. Here, a comprehensive coverage about recent progresses in thermoelectric properties of typical two dimensional (2D) layered materials, including the theoretical and experimental results, is provided. Moreover, the potential applications of 2D thermoelectric materials are also involved. These results indicate that the development of 2D thermoelectric materials take a key role in the flexible electronic devices with thermoelectric technologies.


thermoelectric properties; transport properties; 2D layered materials; figure of merit, first-principle calculations

Full Text:



Bell, L. E., Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems. Science 2008,321 (5895), 1457-1461.

Pichanusakorn, P.; Bandaru, P., Nanostructured thermoelectrics. Mater. Sci. Eng., R 2010,67, 19-63.

Rull-Bravo, M.; Moure, A.; Fernandez, J.; Martín-González, M., Skutterudites as thermoelectric materials: revisited. RSC Adv. 2015,5, 41653-41667.

Sundarraj, P.; Maity, D.; Roy, S. S.; Taylor, R. A., Recent advances in thermoelectric materials and solar thermoelectric generators–a critical review. RSC Adv. 2014,4, 46860-46874.

Tan, G.; Zhao, L.-D.; Kanatzidis, M. G., Rationally designing high-performance bulk thermoelectric materials. Chem. Rev. 2016,116, 12123-12149.

Snyder, G. J.; Toberer, E. S., Complex thermoelectric materials. Nat. Mater. 2008,7, 105-114.

Heremans, J. P.; Jovovic, V.; Toberer, E. S.; Saramat, A.; Kurosaki, K.; Charoenphakdee, A.; Yamanaka, S.; Snyder, G. J., Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science 2008,321, 554-557.

Pei, Y.; LaLonde, A. D.; Heinz, N. A.; Shi, X.; Iwanaga, S.; Wang, H.; Chen, L.; Snyder, G. J., Stabilizing the optimal carrier concentration for high thermoelectric efficiency. Adv. Mater. 2011,23, 5674-5678.

Pei, Y.; Shi, X.; LaLonde, A.; Wang, H.; Chen, L.; Snyder, G. J., Convergence of electronic bands for high performance bulk thermoelectrics. Nature 2011,473, 66.

Liu, W.; Tan, X.; Yin, K.; Liu, H.; Tang, X.; Shi, J.; Zhang, Q.; Uher, C., Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg 2 Si 1− x Sn x solid solutions. Phys. Rev. Lett. 2012,108, 166601.

Heremans, J. P.; Wiendlocha, B.; Chamoire, A. M., Resonant levels in bulk thermoelectric semiconductors. Energy Environ. Sci. 2012,5, 5510-5530.

Tan, G.; Shi, F.; Hao, S.; Chi, H.; Zhao, L.-D.; Uher, C.; Wolverton, C.; Dravid, V. P.; Kanatzidis, M. G., Codoping in SnTe: Enhancement of thermoelectric performance through synergy of resonance levels and band convergence. J. Am. Chem. Soc. 2015,137, 5100-5112.

C.-W. Yau; T. T.-O. Kwok; C.-U. Lei; Kwok, Y.-K., in Internet of everything: Algorithms, methodologies, technologies and perspectives. Springer Singapore: (Eds:B. Di Martino, K.-C. Li, L. T. Yang, A. Esposito), SpringerSingapore, Singapore, 2018.

Kanahashi, K.; Pu, J.; Takenobu, T., 2D Materials for Large‐Area Flexible Thermoelectric Devices. Adv. Energy Mater. 2020,10, 1902842.

Li, D.; Gong, Y.; Chen, Y.; Lin, J.; Khan, Q.; Zhang, Y.; Li, Y.; Zhang, H.; Xie, H., Recent Progress of Two-Dimensional Thermoelectric Materials. Nano-Micro Lett. 2020,12, 36.

Dresselhaus, M. S.; Chen, G.; Tang, M. Y.; Yang, R.; Lee, H.; Wang, D.; Ren, Z.; Fleurial, J. P.; Gogna, P., New directions for low‐dimensional thermoelectric materials. Adv. Mater. 2007,19 (8), 1043-1053.

Hicks, L.; Dresselhaus, M. S., Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 1993,47, 12727.

Heremans, J. P., Low-Dimensional Thermoelectricity. Acta Phys. Polon. A 2005,108, 609-634.

Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S., Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007,6, 652-655.

Chang, C.; Wu, M.; He, D.; Pei, Y.; Wu, C.-F.; Wu, X.; Yu, H.; Zhu, F.; Wang, K.; Chen, Y.; Li, H.; Jing-Feng, L.; Jiaqing, H.; Li-Dong, Z., 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals. Science 2018,360, 778-783.

Zhao, L.-D.; Lo, S.-H.; Zhang, Y.; Sun, H.; Tan, G.; Uher, C.; Wolverton, C.; Dravid, V. P.; Kanatzidis, M. G., Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 2014,508, 373.

Liu, Y.; Zhang, S.; He, J.; Wang, Z. M.; Liu, Z., Recent Progress in the Fabrication, Properties, and Devices of Heterostructures Based on 2D Materials. Nano-Micro Lett. 2019,11, 13.

Molle, A.; Goldberger, J.; Houssa, M.; Xu, Y.; Zhang, S.-C.; Akinwande, D., Buckled two-dimensional Xene sheets. Nat. Mater. 2017,16, 163-169.

Li, L.; Yu, Y.; Ye, G. J.; Ge, Q.; Ou, X.; Wu, H.; Feng, D.; Chen, X. H.; Zhang, Y., Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014,9, 372-377.

Lee, C.; Wei, X.; Kysar, J. W.; Hone, J., Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008,321, 385-388.

Yang, J.; Lü, T.; Myint, Y. W.; Pei, J.; Macdonald, D.; Zheng, J.-C.; Lu, Y., Robust Excitons and Trions in Monolayer MoTe2. ACS Nano 2015,9, 6603-6609.

Lai, J.; Liu, X.; Ma, J.; Wang, Q.; Zhang, K.; Ren, X.; Liu, Y.; Gu, Q.; Zhuo, X.; Lu, W.; Wu, Y.; Li, Y.; Feng, J.; Zhou, S.; Chen, J.-H.; Sun, D., Anisotropic Broadband Photoresponse of Layered Type-II Weyl Semimetal MoTe2. Adv. Mater. 2018,30, 1707152.

Nie, C.; Yu, L.; Wei, X.; Shen, J.; Lu, W.; Chen, W.; Feng, S.; Shi, H., Ultrafast growth of large-area monolayer MoS2film via gold foil assistant CVD for a highly sensitive photodetector. Nanotechnol. 2017,28, 275203.

Venkatasubramanian, R.; Siivola, E.; Colpitts, T.; O'quinn, B., Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 2001,413, 597.

Wu, C.-W.; Wu, Y.-R., Optimization of thermoelectric properties for rough nano-ridge GaAs/AlAs superlattice structure. AIP Adv. 2016,6, 115201.

Ohta, H.; Kim, S.; Mune, Y.; Mizoguchi, T.; Nomura, K.; Ohta, S.; Nomura, T.; Nakanishi, Y.; Ikuhara, Y.; Hirano, M.; Hideo, H.; Kunihito, K., Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO 3. Nat. Mater. 2007,6, 129.

Liu, Y.; Wang, W.; Yang, J.; Li, S., Recent Advances of Layered Thermoelectric Materials. Adv. Sustainable Syst. 2018,2, 1800046.

Singh, A. K.; Mathew, K.; Zhuang, H. L.; Hennig, R. G., Computational Screening of 2D Materials for Photocatalysis. J. Phys. Chem. Lett. 2015,6, 1087-1098.

Singh, A. K.; Hennig, R. G., Computational prediction of two-dimensional group-IV mono-chalcogenides. Appl. Phys. Lett. 2014,105, 042103.

Wang, F. Q.; Zhang, S.; Yu, J.; Wang, Q., Thermoelectric properties of single-layered SnSe sheet. Nanoscale 2015,7, 15962-15970.

Volykhov, A.; Shtanov, V.; Yashina, L., Phase relations between germanium, tin, and lead chalcogenides in pseudobinary systems containing orthorhombic phases. Inorg. Mater. 2008,44, 345-356.

Hu, Z.-Y.; Li, K.-Y.; Lu, Y.; Huang, Y.; Shao, X.-H., High thermoelectric performances of monolayer SnSe allotropes. Nanoscale 2017,9, 16093-16100.

Morales-Ferreiro, J.; Diaz-Droguett, D.; Celentano, D.; Luo, T., First-Principles Calculations of Thermoelectric Properties of IV–VI Chalcogenides 2D Materials. Front. Mech. Eng. 2017,3, 15.

Guo, S.-D.; Wang, Y.-H., Thermoelectric properties of orthorhombic group IV–VI monolayers from the first-principles calculations. J. Appl. Phys. 2017,121, 034302.

Xu, L.; Yang, M.; Wang, S. J.; Feng, Y. P., Electronic and optical properties of the monolayer group-IV monochalcogenides M X (M= Ge, Sn; X= S, Se, Te). Phys. Rev. B 2017,95, 235434.

Shafique, A.; Shin, Y.-H., Thermoelectric and phonon transport properties of two-dimensional IV–VI compounds. Sci. Rep. 2017,7, 506.

Qin, G.; Qin, Z.; Fang, W.-Z.; Zhang, L.-C.; Yue, S.-Y.; Yan, Q.-B.; Hu, M.; Su, G., Diverse anisotropy of phonon transport in two-dimensional group IV–VI compounds: A comparative study. Nanoscale 2016,8, 11306-11319.

Ding, G.; Gao, G.; Yao, K., High-efficient thermoelectric materials: The case of orthorhombic IV-VI compounds. Sci. Rep. 2015,5, 9567.

Yang, J.-H.; Yuan, Q.; Deng, H.; Wei, S.-H.; Yakobson, B. I., Earth-abundant and non-toxic SiX (X= S, Se) monolayers as highly efficient thermoelectric materials. J. Phys. Chem. C 2017,121, 123-128.

Nissimagoudar, A. S.; Ma, J.; Chen, Y.; Li, W., Thermal transport in monolayer InSe. J. Phys. Condens. Matter 2017,29, 335702.

Bahuguna, B. P.; Saini, L.; Sharma, R. O.; Tiwari, B., Hybrid functional calculations of electronic and thermoelectric properties of GaS, GaSe, and GaTe monolayers. Phys. Chem. Chem. Phys. 2018,20, 28575-28582.

Huang, H.; Xing, G.; Fan, X.; Singh, D. J.; Zheng, W., Layered Tl 2 O: a model thermoelectric material. J. Mater. Chem. C 2019,7, 5094-5103.

Han, G.; Chen, Z. G.; Drennan, J.; Zou, J., Indium selenides: structural characteristics, synthesis and their thermoelectric performances. Small 2014,10, 2747-2765.

Hogg, J.; Sutherland, H.; Williams, D., The crystal structure of tetraindium triselenide. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1973,29, 1590-1593.

Popović, S.; Tonejc, A.; Gržeta-Plenković, B.; Čelustka, B.; Trojko, R., Revised and new crystal data for indium selenides. J. Appl. Crystallogr. 1979,12 (4), 416-420.

Nagpal, K.; Ali, S., X-Ray Crystallographic Study of InSe. Indian J. Pure Appl. Phys. 1976,14, 434-440.

Hogg, J., The crystal structure of In6Se7. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1971,27, 1630-1634.

Han, G.; Chen, Z.-G.; Yang, L.; Cheng, L.; Jack, K.; Drennan, J.; Zou, J., Thermal stability and oxidation of layer-structured rhombohedral In3Se4 nanostructures. Appl. Phys. Lett. 2013,103, 263105.

Bandurin, D. A.; Tyurnina, A. V.; Geliang, L. Y.; Mishchenko, A.; Zólyomi, V.; Morozov, S. V.; Kumar, R. K.; Gorbachev, R. V.; Kudrynskyi, Z. R.; Pezzini, S.; D., K. Z.; Uli, Z.; S., N. K.; Amalia, P.; Laurence, E.; V., G. I.; I., F. k. V.; K., G. A.; Yang, C., High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nat. Nanotechnol. 2017,12, 223.

Rhyee, J.-S.; Lee, K. H.; Lee, S. M.; Cho, E.; Kim, S. I.; Lee, E.; Kwon, Y. S.; Shim, J. H.; Kotliar, G., Peierls distortion as a route to high thermoelectric performance in In4Se3-δ crystals. Nature 2009,459, 965.

Zolyomi, V.; Drummond, N.; Fal'Ko, V., Band structure and optical transitions in atomic layers of hexagonal gallium chalcogenides. Phys. Rev. B 2013,87, 195403.

Zólyomi, V.; Drummond, N.; Fal'Ko, V., Electrons and phonons in single layers of hexagonal indium chalcogenides from ab initio calculations. Phys. Rev. B 2014,89, 205416.

Hu, P.; Wang, L.; Yoon, M.; Zhang, J.; Feng, W.; Wang, X.; Wen, Z.; Idrobo, J. C.; Miyamoto, Y.; Geohegan, D. B.; Kai, X., Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. Nano Lett. 2013,13, 1649-1654.

Das, P.; Wickramaratne, D.; Debnath, B.; Yin, G.; Lake, R. K., Charged impurity scattering in two-dimensional materials with ring-shaped valence bands: GaS, GaSe, InS, and InSe. Phys. Rev. B 2019,99, 085409.

Lei, S.; Ge, L.; Liu, Z.; Najmaei, S.; Shi, G.; You, G.; Lou, J.; Vajtai, R.; Ajayan, P. M., Synthesis and photoresponse of large GaSe atomic layers. Nano Lett. 2013,13, 2777-2781.

Lei, S.; Ge, L.; Najmaei, S.; George, A.; Kappera, R.; Lou, J.; Chhowalla, M.; Yamaguchi, H.; Gupta, G.; Vajtai, R.; D., M. A.; M., A. P., Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe. ACS nano 2014,8, 1263-1272.

Hu, P.; Wen, Z.; Wang, L.; Tan, P.; Xiao, K., Synthesis of few-layer GaSe nanosheets for high performance photodetectors. ACS nano 2012,6, 5988-5994.

Late, D. J.; Liu, B.; Luo, J.; Yan, A.; Matte, H. R.; Grayson, M.; Rao, C.; Dravid, V. P., GaS and GaSe ultrathin layer transistors. Adv. Mater. 2012,24, 3549-3554.

Wickramaratne, D.; Zahid, F.; Lake, R. K., Electronic and thermoelectric properties of van der Waals materials with ring-shaped valence bands. J. Appl. Phys. 2015,118, 075101.

Hung, N. T.; Nugraha, A. R.; Saito, R., Two-dimensional InSe as a potential thermoelectric material. Appl. Phys. Lett. 2017,111, 092107.

T. Hung, N.; Nugraha, A. R.; Yang, T.; Zhang, Z.; Saito, R., Thermoelectric performance of monolayer InSe improved by convergence of multivalley bands. J. Appl. Phys. 2019,125, 082502.

Zeng, J.; He, X.; Liang, S.-J.; Liu, E.; Sun, Y.; Pan, C.; Wang, Y.; Cao, T.; Liu, X.; Wang, C.; Lili, Z.; Shengnan, Y.; Guangxu, S.; Zhenlin, W.; Kenji, W.; Takashi, T.; J., S. D.; Lijun, Z.; Feng, M., Experimental identification of critical condition for drastically enhancing thermoelectric power factor of two-dimensional layered materials. Nano Lett. 2018,18, 7538-7545.

Balendhran, S.; Walia, S.; Nili, H.; Sriram, S.; Bhaskaran, M., Elemental analogues of graphene: silicene, germanene, stanene, and phosphorene. Small 2015,11, 640-652.

Zhang, S.; Yan, Z.; Li, Y.; Chen, Z.; Zeng, H., Atomically thin arsenene and antimonene: semimetal–semiconductor and indirect–direct band‐gap transitions. Angew. Chem. Int. Ed. 2015,54, 3112-3115.

Huang, H.; Fan, X.; Singh, D. J.; Zheng, W., The thermal and thermoelectric transport properties of SiSb, GeSb and SnSb monolayers. J. Mater. Chem. C 2019,7, 10652-10662.

Barreteau, C.; Michon, B.; Besnard, C.; Giannini, E., High-pressure melt growth and transport properties of SiP, SiAs, GeP, and GeAs 2D layered semiconductors. J. Cryst. Growth 2016,443, 75-80.

Lee, K.; Kamali, S.; Ericsson, T.; Bellard, M.; Kovnir, K., GeAs: Highly anisotropic van der Waals thermoelectric material. Chem. Mater. 2016,28, 2776-2785.

Wang, F. Q.; Guo, Y.; Wang, Q.; Kawazoe, Y.; Jena, P., Exceptional thermoelectric properties of layered GeAs2. Chem. Mater. 2017,29, 9300-9307.

Zhao, L.-D.; Tan, G.; Hao, S.; He, J.; Pei, Y.; Chi, H.; Wang, H.; Gong, S.; Xu, H.; Dravid, V. P.; Ctirad, U.; Jeffrey, S. G.; Chris, W.; G., K. M., Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science 2016,351, 141-144.

Zhao, T.; Sun, Y.; Shuai, Z.; Wang, D., GeAs2: A IV–V group two-dimensional semiconductor with ultralow thermal conductivity and high thermoelectric efficiency. Chem. Mater. 2017,29, 6261-6268.

Zhang, W.; Huang, Z.; Zhang, W.; Li, Y., Two-dimensional semiconductors with possible high room temperature mobility. Nano Res. 2014,7, 1731-1737.

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012,7, 699-712.

Ghosh, K.; Singisetti, U., Thermoelectric transport coefficients in mono-layer MoS2 and WSe2: role of substrate, interface phonons, plasmon, and dynamic screening. J. Appl. Phys. 2015,118, 135711.

Kumar, S.; Schwingenschlogl, U., Thermoelectric response of bulk and monolayer MoSe2 and WSe2. Chem. Mater. 2015,27, 1278-1284.

Li, W.; Carrete, J.; Mingo, N., Thermal conductivity and phonon linewidths of monolayer MoS2 from first principles. Appl. Phys. Lett. 2013,103, 253103.

Zhang, G.; Zhang, Y.-W., Thermoelectric properties of two-dimensional transition metal dichalcogenides. J. Mater. Chem. C 2017,5, 7684-7698.

Yan, R.; Simpson, J. R.; Bertolazzi, S.; Brivio, J.; Watson, M.; Wu, X.; Kis, A.; Luo, T.; Hight Walker, A. R.; Xing, H. G., Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy. ACS nano 2014,8, 986-993.

Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F., Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 2010,105, 136805.

Fan, X.; Chang, C.-H.; Zheng, W.; Kuo, J.-L.; Singh, D. J., The electronic properties of single-layer and multilayer MoS2 under high pressure. J. Phys. Chem. C 2015,119, 10189-10196.

Dou, X.; Ding, K.; Jiang, D.; Sun, B., Tuning and Identification of Interband Transitions in Monolayer and Bilayer Molybdenum Disulfide Using Hydrostatic Pressure. ACS Nano 2014,8, 7458-7464.

Fan, X.; Singh, D. J.; Zheng, W., Valence band splitting on multilayer MoS2: mixing of spin–orbit coupling and interlayer coupling. J. Phys. Chem. Lett. 2016,7, 2175-2181.

Hippalgaonkar, K.; Wang, Y.; Ye, Y.; Qiu, D. Y.; Zhu, H.; Wang, Y.; Moore, J.; Louie, S. G.; Zhang, X., High thermoelectric power factor in two-dimensional crystals of MoS2. Phys. Rev. B 2017,95, 115407.

Wickramaratne, D.; Zahid, F.; Lake, R. K., Electronic and thermoelectric properties of few-layer transition metal dichalcogenides. J. Chem. Phys. 2014,140, 124710.

Huang, W.; Luo, X.; Gan, C. K.; Quek, S. Y.; Liang, G., Theoretical study of thermoelectric properties of few-layer MoS2 and WSe2. Phys. Chem. Chem. Phys. 2014,16, 10866-10874.

Yumnam, G.; Pandey, T.; Singh, A. K., High temperature thermoelectric properties of Zr and Hf based transition metal dichalcogenides: A first principles study. J. Chem. Phys. 2015,143, 234704.

Ding, G.; Gao, G.; Huang, Z.; Zhang, W.; Yao, K., Thermoelectric properties of monolayer MSe2 (M= Zr, Hf): low lattice thermal conductivity and a promising figure of merit. Nanotechnol. 2016,27, 375703.

Jin, Z.; Liao, Q.; Fang, H.; Liu, Z.; Liu, W.; Ding, Z.; Luo, T.; Yang, N., A revisit to high thermoelectric performance of single-layer MoS 2. Sci. Rep. 2015,5, 18342.

Sahoo, S.; Gaur, A. P.; Ahmadi, M.; Guinel, M. J.-F.; Katiyar, R. S., Temperature-dependent Raman studies and thermal conductivity of few-layer MoS2. J. Phys. Chem. C 2013,117, 9042-9047.

Hellman, O.; Broido, D. A., Phonon thermal transport in Bi2Te3 from first principles. Phys. Rev. B 2014,90, 134309.

Qiu, B.; Bao, H.; Ruan, X.; Zhang, G.; Wu, Y. In Molecular dynamics simulations of lattice thermal conductivity and spectral phonon mean free path of PbTe: Bulk and nanostructures, Comput. Mater. Sci., 2012; pp 278-285.

Sun, J.; Shi, H.; Siegrist, T.; Singh, D. J., Electronic, transport, and optical properties of bulk and mono-layer PdSe2. Appl. Phys. Lett. 2015,107, 153902.

Chow, W. L.; Yu, P.; Liu, F.; Hong, J.; Wang, X.; Zeng, Q.; Hsu, C. H.; Zhu, C.; Zhou, J.; Wang, X.; Juan, X.; Jiaxu, Y.; Yu, C.; Di, W.; Ting, Y.; Zexiang, S.; Hsin, L.; Chuanhong, J.; Kang, T. B.; Zheng, L., High mobility 2D palladium diselenide field‐effect transistors with tunable ambipolar characteristics. Adv. Mater. 2017,29, 1602969.

Oyedele, A. D.; Yang, S.; Liang, L.; Puretzky, A. A.; Wang, K.; Zhang, J.; Yu, P.; Pudasaini, P. R.; Ghosh, A. W.; Liu, Z., PdSe2: Pentagonal two-dimensional layers with high air stability for electronics. J. Am. Chem. Soc. 2017,139, 14090-14097.

Wang, Y.; Li, Y.; Chen, Z., Not your familiar two dimensional transition metal disulfide: structural and electronic properties of the PdS 2 monolayer. J. Mater. Chem. C 2015,3, 9603-9608.

Qin, D.; Yan, P.; Ding, G.; Ge, X.; Song, H.; Gao, G., Monolayer PdSe2: A promising two-dimensional thermoelectric material. Sci. Rep. 2018,8, 2764.

Lin, J.; Zuluaga, S.; Yu, P.; Liu, Z.; Pantelides, S. T.; Suenaga, K., Novel Pd2Se3 Two-Dimensional Phase Driven by Interlayer Fusion in Layered PdSe 2. Phys. Rev. Lett. 2017,119, 016101.

Naghavi, S. S.; He, J.; Xia, Y.; Wolverton, C., Pd2Se3 monolayer: a promising two-dimensional thermoelectric material with ultralow lattice thermal conductivity and high power factor. Chem. Mater. 2018,30, 5639-5647.

Gandi, A. N.; Schwingenschlögl, U., Thermal conductivity of bulk and monolayer MoS2. EPL 2016,113, 36002.

Zhang, J.; Liu, X.; Wen, Y.; Shi, L.; Chen, R.; Liu, H.; Shan, B., Titanium trisulfide monolayer as a potential thermoelectric material: a first-principles-based Boltzmann transport study. ACS Appl. Mater. Interfaces 2017,9, 2509-2515.

Park, S. H.; Jo, S.; Kwon, B.; Kim, F.; Ban, H. W.; Lee, J. E.; Gu, D. H.; Lee, S. H.; Hwang, Y.; Kim, J.-S.; Dow-Bin, H.; Sukbin, L.; Jin, C. K.; Wook, J.; Sung, S. J., High-performance shape-engineerable thermoelectric painting. Nat. Commun. 2016,7, 1-10.

Suemori, K.; Watanabe, Y.; Hoshino, S., Carbon nanotube bundles/polystyrene composites as high-performance flexible thermoelectric materials. Appl. Phys. Lett. 2015,106, 113902.

Kim, S. J.; We, J. H.; Cho, B. J., A wearable thermoelectric generator fabricated on a glass fabric. Energy Environ. Sci. 2014,7, 1959-1965.

Lu, Z.; Layani, M.; Zhao, X.; Tan, L. P.; Sun, T.; Fan, S.; Yan, Q.; Magdassi, S.; Hng, H. H., Fabrication of flexible thermoelectric thin film devices by inkjet printing. Small 2014,10, 3551.

Kim, S. J.; Choi, H.; Kim, Y.; We, J. H.; Shin, J. S.; Lee, H. E.; Oh, M.-W.; Lee, K. J.; Cho, B. J., Post ionized defect engineering of the screen-printed Bi2Te2. 7Se0. 3 thick film for high performance flexible thermoelectric generator. Nano Energy 2017,31, 258-263.

Kim, C. S.; Lee, G. S.; Choi, H.; Kim, Y. J.; Yang, H. M.; Lim, S. H.; Lee, S.-G.; Cho, B. J., Structural design of a flexible thermoelectric power generator for wearable applications. Appl. Energy 2018,214, 131-138.

Oh, J. Y.; Lee, J. H.; Han, S. W.; Chae, S. S.; Bae, E. J.; Kang, Y. H.; Choi, W. J.; Cho, S. Y.; Lee, J.-O.; Baik, H. K.; Il, L. T., Chemically exfoliated transition metal dichalcogenide nanosheet-based wearable thermoelectric generators. Energy Environ. Sci. 2016,9, 1696-1705.

Cai, X.; Sushkov, A. B.; Suess, R. J.; Jadidi, M. M.; Jenkins, G. S.; Nyakiti, L. O.; Myers-Ward, R. L.; Li, S.; Yan, J.; Gaskill, D. K.; E., M. T.; Dennis, D. H.; S., F. M., Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene. Nat. Nanotechnol. 2014,9, 814.

Muench, J. E.; Ruocco, A.; Giambra, M. A.; Miseikis, V.; Zhang, D.; Wang, J.; Watson, H. F.; Park, G. C.; Akhavan, S.; Sorianello, V.; Michele, M.; Andrea, T.; Camilla, C.; Marco, R.; C., F. A.; Ilya, G., Waveguide-integrated, plasmonic enhanced graphene photodetectors. Nano Lett. 2019,19, 7632-7644.



  • There are currently no refbacks.

Copyright (c) 2020 Haihua HUANG, Xiaofeng FAN

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.