Research and Application of Materials Science

Neutron Diffraction Study on the Magnetic Structure of 153EuMnO3-δ: One Way to Assess the Magnetic Structure of EuMnO3-δ

MAXing, FARIDMuhammad, LIJian, YANGAimei, LIGuobao, LIAOFuhui, LIULaijun, LINJianhua

Abstract


Owing to the strong neutron absorption of 151Eu, 151Eu free 153EuMnO3-δ has been synthesized to collect the neutron diffraction data for analyzing the magnetic structure of EuMnO3-δ. The obtained neutron diffraction data of 153EuMnO3-δ indicates that the magnetic diffraction peaks corresponding to cAAFM (canted A-type antiferromagnetic) phase can be observed, but the magnetic diffraction peaks corresponding to expected ICAFM (incommensurate antiferromagnetic) phase may be too weak to be observed.


Keywords


Magnetic structure; Neutron diffraction; 153EuMnO3; Perovskite

Full Text:

PDF

References


Fiebig M, Lottermoser T, Frohlich D, et al. Observation of coupled magnetic and electric domains. Nature 2002; 419(6909): 818-820.

Kimura T, Goto T, Shintani H, et al. Magnetic control of ferroelectric polarization. Nature 2003; 426(6962): 55-58.

Lottermoser T, Lonkai T, Amann U, et al. Magnetic phase control by an electric field. Nature 2004; 430(6999): 541-544.

Ramirez AP. Colossal magnetoresistance. J. Phys: Condens. Matter 1997; 9: 8171-8199.

Rao CNR, Arulraj A, Santosh PN, et al. Charge-ordering in manganates. Chemistry of Materials 1998; 10(10): 2714-2722.

Kimura T, Ishihara S, Shintani H, et al. Distorted perovskite with eg 1 configuration as a frustrated spin system. Physical Review B 2003; 68(6): 060403.

Alonso JA, Martínez-Lope MJ, Casais MT, et al. Evolution of the Jahn-Teller Distortion of MnO6 Octahedra in RMnO3 Perovskites (R =Pr, Nd, Dy, Tb, Ho, Er, Y): A Neutron Diffraction Study. Inorg. Chem. 2000; 39(5): 917-923.

Quezel S, Tcheou F, Rossat-mignod J, et al. Magnetic Structure of the Perovskite-like Compound TbMnO3. Physica 1977; 86-88: 916-918.

Wu SY, Kuo CM, Wang HY, et al. Magnetic structure and spin reorientation of the Mn ions in NdMnO3. J. Appl. Phys. 2000; 87: 5822-5824.

Jirák Z, KrupičKA S, Šimša Z, et al. Neutron Diffraction Study of Pr1-xCaxMnO3 Perovskites. Journal of Magnetism and Magnetic Materials 1985; 53:153-166.

Munoz A, M. T. Casais, A. Alonso JA, et al. Complex Magnetism and Magnetic Structures of the Metastable HoMnO3 Perovskite. Inorg. Chem. 2001; 40: 1020-1028.

Rietveld H. A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography 1969; 2(2): 65-71.

Mukovskii YM, Hilscher G, Michor H, et al. Magnetic properties, resistivity, and heat capacity of EuMnO3 and Eu0.7A0.3MnO3 (A=Ca, Sr) compounds. Journal of Applied Physics 1998; 83(11): 7163-7165.

Troyanchuk IO, Samsonenko NV, Kasper NV, et al. Magnetic and Transport Properties of EuMnO3+x Substituted by Ca, Sr and Cr Ions. Physica Status Solidi (a) 1997; 160(1): 195-203.

Deng JM, Yang AM, Farid MA, et al. Synthesis, structure and magnetic properties of (Eu1-xMnx)MnO3-δ. RSC Advances 2017; 7(4): 2019-2024.

Pollert E, Jirak Z. Study of Pr1-xMn1+xO3 Perovskites. J. Solid State Chem. 1980; 35(2): 262-266.

Lescano G, Figueiredo FM, Marques FMB, et al. Synthesis and electrical conductivity of Y1-xMn1-yO3-δ. J. Eur. Ceram. Soc. 2001; 21(10-11): 2037-2040.

Gélard I, Jehanathan N, Roussel H, et al. Off-Stoichiometry Effects on the Crystalline and Defect Structure of Hexagonal Manganite REMnO3 Films (RE = V, Er, Dy). Chem. Mater. 2011; 23(5): 1232-1238.

Ulyanov AN, Pismenova NE, Yang DS, et al. Local structure, magnetization and Griffiths phase of self-doped La1-xMnO3+δ manganites. J. Alloys Compd. 2013; 550: 124-128.

Wang R, Yang CX, Fan M, et al. Phase relationship of the TbO1.81-Mn3O4-Fe2O3 system synthesized at 1200°C. J. Alloys Compd. 2013; 554: 385-394.

Zhang H, Flacau R, Sun JL, et al. Synthesis, Structure, and Magnetic Properties of (Tb1-xMny)MnO3-δ. Inorg. Chem. 2014; 53(9): 4535-4540.

Zhang H, Flacau R, Du X, et al. Multiferroicity Broken by Commensurate Magnetic Ordering in Terbium Orthomanganite. ChemPhysChem, 2016; 17(8): 1098-1103.

Fedorova OM, Balakirev VF, Golikov YV. Stability region of Eu2-xMnxO3+δ solid solutions in air. Inorg. Mater. 2007, 43(9), 994-999.

Dabrowski B, Kolesnik S, Baszczuk A, et al. Structural, transport, and magnetic properties of RMnO3 perovskites (R=La, Pr, Nd, Sm, 153Eu, Dy). Journal of Solid State Chemistry 2005; 178(3): 629-637.

Larson AC, von Dreele RB. Report LAUR, Los Alamos National Laboratory, Los Alamos, NM 1985; 86-748

Hoshi K, Goto Y, Mizuguchi Y, et al. Selenium Isotope Effect in the Layered Bismuth Chalcogenide Superconductor LaO0.6F0.4BiSSe2. Physical Review B 2018; 97(9): 094509.

Bud'ko SL, Lapertot G, Petrovic C, et al. Boron Isotope Effect in Superconducting MgB2. Physical Review Letters, 2001; 86(9): 1877-1880.

Batlogg B, Cava RJ, Jayaraman A, et al. Isotope Effect in the High-Tc Superconductors Ba2YCu3O7 and Ba2EuCu3O7. Physical Review Letters 1987; 58(22): 2333-2336.

Yang AM, Sheng YH, Farid MA, et al. Copper doped EuMnO3: synthesis, structure and magnetic properties. RSC Advances 2016; 6(17): 13928-13933.

Kumar N, Sundaresan A. On the observation of negative magnetization under zero-field-cooled process. Solid State Communications 2010; 150(25): 1162-1164.

Katari V, Achary SN, Deshpande SK, et al. Effect of Annealing Environment on Low-Temperature Magnetic and Dielectric Properties of EuCo0.5Mn0.5O3. The Journal of Physical Chemistry C 2014; 118(31): 17900-17913.

Kumar A, Yusuf SM, The phenomenon of negative magnetization and its implications. Physics Reports 2015; 556(0): 1-34.

Das R, Poddar P. Observation of exchange bias below incommensurate antiferromagnetic (ICAFM) to canted A-type antiferromagnetic (cAAFM) transition in nanocrystalline orthorhombic EuMnO3. RSC Advances 2014; 4(21): 10614-10618.




DOI: https://doi.org/10.33142/rams.v2i2.3173

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Xing MA, Muhammad Asim FARID, Jian LI, Aimei YANG, Guobao LI, Fuhui LIAO, Laijun LIU, Jianhua LIN

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.