A Novel Preparation Method of Organic-inorganic Aramid Nanofibers (ANFs) Hybrid Membrane Using Ethanol as Proton Donor
Abstract
Keywords
Full Text:
PDFReferences
X b Yin, Feng X. Organic-Inorganic Hybrid Membranes for Proton Exchange Membrane Fuel Cells [J]. Current Organic Chemistry, 2014, 18(18):2405-2414. http://doi.org/ 10.2174/1385272819666140806202329.
Tripathi B P, Shahi V K. Organic–inorganic nanocomposite polymer electrolyte membranes for fuel cell applications[J]. Progress in Polymer Science, 2011, 36(7): 945-979. http://doi.org/10.1016/j.progpolymsci.2010.12.005.
de Oliveira R L, da Silva Barud H, De Salvi D T B, et al. Transparent organic–inorganic nanocomposites membranes based on carboxymethylcellulose and synthetic clay[J]. Industrial Crops and Products, 2015, 69: 415-423. http://doi.org/ 10.1016/j.indcrop.2015.02.015.
Tripathi B P, Kumar M, Saxena A, et al. Bifunctionalized organic–inorganic charged nanocomposite membrane for pervaporation dehydration of ethanol[J]. Journal of colloid and interface science, 2010, 346(1): 54-60. http://doi.org/ 10.1016/j.jcis.2010.02.022.
Yang H C, Hou J, Chen V, et al. Surface and interface engineering for organic–inorganic composite membranes[J]. Journal of Materials Chemistry A, 2016, 4(25): 9716-9729. http://doi.org/ 10.1039/c6ta02844f.
Lyu J, Wang X, Liu L, et al. High strength conductive composites with plasmonic nanoparticles aligned on aramid nanofibers[J]. Advanced Functional Materials, 2016, 26(46): 8435-8445. http://doi.org/10.1002/adfm.201603230.
Zhu J, Cao W, Yue M, et al. Strong and stiff aramid nanofiber/carbon nanotube nanocomposites [J]. ACS nano, 2015, 9(3): 2489-2501. http://doi.org/10.1021/nn504927e.
Li Y, Zhu H, Gu H, et al. Strong transparent magnetic nanopaper prepared by immobilization of Fe3O4 nanoparticles in a nanofibrillated cellulose network[J]. Journal of Materials Chemistry A, 2013, 1(48): 15278-15283. http://doi.org/ 10.1039/c3ta12591b.
Mallakpour S, Barati A. Efficient preparation of hybrid nanocomposite coatings based on poly (vinyl alcohol) and silane coupling agent modified TiO2 nanoparticles[J]. Progress in Organic Coatings, 2011, 71(4): 391-398. http://doi.org/ 10.1016/j.porgcoat.2011.04.010.
Hu J, Gao Q, Xu L, et al. Significant improvement in thermal and UV resistances of UHMWPE fabric through in situ formation of polysiloxane-TiO2 hybrid layers[J]. Acs Applied Materials & Interfaces, 2016, 8(35): 23311-23320. http://doi.org/10.1021/acsami.6b04914.
Popov A P, Priezzhev A V, Fedoseeva M S, et al. Calculation of absorption, reflectance, transmission, and depolarization of UV radiation propagating through a layer of suspension of titanium dioxide nanoparticles[J]. Moscow University Physics Bulletin, 2009, 64(5): 513-518. http://doi.org/10.3103/S0027134909050099.
Yang H, Zhu S, Ning P. Studying the mechanisms of titanium dioxide as ultraviolet‐blocking additive for films and fabrics by an improved scheme [J]. Journal of Applied Polymer Science, 2004, 92(5): 3201-3210. http://doi.org/10.1002/app.20327.
Pakdel E, Daoud W A, Wang X. Assimilating the photo-induced functions of TiO2-based compounds in textiles: emphasis on the sol-gel process [J]. Textile Research Journal, 2014, 85(13): 1404-1428. http://doi.org/10.1177/0040517514551462.
DOI: https://doi.org/10.33142/rams.v3i1.4496
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Shengjun LU
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.