Toward high capacity and stable SnO2 hollow nanosphere electrode materials: A case study of Ni-substituted modification
Abstract
Keywords
Full Text:
PDFReferences
Ma D, Li Y, Mi H, et al., Robust SnO2-x nanoparticle-impregnated carbon nanofibers with
outstanding electrochemical performance for advanced sodium-ion batteries, Angew. Chem. Int. Ed. 57 (2018):
-8905.
Tan L, Feng S.H, Li X H, et al., Oxygen-induced lithiophilicity of tin-based framework toward highly stable lithium metal anode. Chem. Eng. J. 394 (2020): 124848.
N. Mahmood, Tang T Y, Hou Y L. Nanostructured anode materials for lithium ion batteries: progress, challenge and perspective, Adv. Energy Mater. 6 (2016): 1600374.
Wang L, Y. Leconte, Feng Z, et al., Novel preparation of N-doped SnO2 nanoparticles via laser-assisted pyrolysis: demonstration of exceptional lithium storage properties. Adv. Mater. 29 (2017): 1603286
V.M.H. Ng, Wu S Y , Liu P J, et al., Hierarchical SnO2-graphite nanocomposite anode for lithium-ion batteries through high energy mechanical activation, Electrochim. Acta 248 (2017): 440-448.
Zhang F, Yang C K, Gao X, et al., SnO2@PANI core–shell nanorod arrays on 3D graphite foam: a high-performance integrated electrode for lithium-ion batteries, ACS Appl. Mater. Interfaces 9 (2017):9620-9629.
Tian Q, Zhang F, Yang L. Fabricating thin two-dimensional hollow tin dioxide/carbon nanocomposite for
high-performance lithium-ion battery anode. Appl. Surf. Sci. 481 (2019): 1377-1384.
Shi S.J, Deng T T, Zhang M, et al., Fast facile synthesis of SnO2/graphene composite assisted by microwave as anode material for lithium-ion batteries, Electrochim. Acta 246 (2017): 1104-1111.
Zhang L, Jiang L, Yan H, et al., Mono dispersed SnO2 nanoparticles on both sides of single layer graphene sheets as anode materials in Li-ion batteries. J. Mater. Chem. 20 (2010): 5462-5467.
Lou X, Deng D, Lee J, et al., Preparation of SnO2/carbon composite hollow spheres and their lithium storage
properties. Chem. Mater. 20 (2008): 6562-6566.
Zhu Z, Wang S, Du J, et al., Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as
high-performance anode for lithium-ion batteries, Nano Lett. 14 (2014): 153-157.
Yi L G, Liu L, Guo G X, et al., Expanded graphite@SnO2@polyaniline composite with enhanced performance as anode materials for lithium ion batteries, Electrochim. Acta 240 (2017): 63-71.
Hou C C, S. Brahma, Weng S C, et al., low temperature synthesis of SnO2/reduced graphene oxide nanocomposite as anode material for lithium-ion batteries, Appl. Surf. Sci. 413 (2017): 160-168.
Zhu Z, Wang S, Du J, et al., Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as
high-performance anode for lithium-ion batteries, Nano Lett. 14 (2014): 153-157.
Hong Y, Mao W, Hu Q, et al., Ai, Nitrogen-doped carbon coated SnO2 nanoparticles embedded in a hierarchical porous carbon dramework for high-performance lithium-ion battery anodes, J. Power Sources 428 (2019): 44-52.
Zhou X, Yu L, Lou X W D. Formation of uniform N-doped carbon-coated SnO2 submicroboxes with enhanced lithium storage properties, Adv. Energy Mater. 6 (2016): 1066451.
Zhang L, Wu H B, Liu B, et al., Formation of porous SnO2 microboxes via selective leaching for highly reversible lithium storage, Energy Environ. Sci. 7 (2014): 1013-1017.
Huang B, Li X, Pei Y, et al., Novel carbon-encapsulated porous SnO2 anode for lithium-ion batteries with much
improved cyclic stability, Small 12 (2016): 1945-1955.
D. Kim, D. Lee, J. Kim, et al. Electrospun Ni-added SnO2-carbon nanofiber composite anode for
high-performance lithium-ion batteries, ACS Appl. Mater. Interfaces 4 (2012): 5408-5415.
Li H Z, Yang L Y, Liu J, et al., Improved electrochemical performance of yolk-shell structured SnO2@void@C porous nanowires as anode for lithium and sodium batteries, J. Power Sources 324 (2016): 780-787.
Chang L, Yi Z, Wang Z, et al., Ultrathin SnO2 nanosheets anchored on graphene with improved electrochemical kinetics for reversible lithium and sodium storage, Appl. Surf. Sci. 484 (2019): 646-654.
Ding S, Luan D, F Boey, SnO2 nanosheets grown on graphene sheets with enhanced lithium storage properties, Chem. Commun. 47 (2011): 7155-7157.
Wei W, Du P, Liu D, et al., Facile mass production of nanoporous SnO2 nanosheets as anode materials for high performance lithium-ion batteries, J Colloid Interf. Sci. 503 (2017): 205-213.
Luo G E, Liu W J, Zeng S S, et al., Hierarchal mesoporous SnO2@C@TiO2 nanochains for anode material of lithium-ion batteries with excellent cycling stability, Electrochim. Acta 184 (2015): 219-225.
Wu P, Du N, Zhang H , et al., Self-templating synthesis of SnO2-carbon hybrid hollow spheres for superior reversible lithium ion storage, ACS Appl. Mater. Interfaces 3 (2011): 1946-1952.
Hong Y J, Son M Y, Kang Y C. One-pot facile synthesis of double-shelled SnO(2) yolk-shell-structured powders by continuous process as anode materials for Li-ion batteries, Adv. Mater. 25 (2013): 2279-2283, 2250.
Ma D Q, Dou P, Yu X H, et al., Novel hollow SnO2 nanosphere@TiO2 yolk–shell hierarchical nanospheres as
anode material for high-performance lithium-ion batteries, Mater. Lett. 157 (2015): 228-230.
Yi L G, Liu L, Guo G X, et al., Expanded graphite@SnO2@polyaniline composite with enhanced performance as anode materials for lithium ion batteries, Electrochim. Acta 240 (2017): 63-71.
Hu L L, Yang L P, Zhang D, et al., Designed synthesis of SnO2-C hollow microspheres as an anode material for
lithium-ion batteries, Chem. Commun. 53 (2017): 11189-11192.
Liu Q, Dou Y, Ruan B, et al., Carbon-Coated Hierarchical SnO2 hollow spheres for lithium ion batteries, Chem. Eur. J. 22 (2016): 5853-5857.
Wang Y, I. Djerdj, B. Smarsly, et al., Antimony-doped SnO2 nanopowders with high crystallinity for lithium-ion battery electrode, Chem.Mater. 2009, 21: 3202-3209.
Yan Y, Du F, Shen X, et al., Large-scale facile synthesis of Fe-doped SnO2 porous hierarchical nanostructures and their enhanced lithium storage properties. J. Mater. Chem. A 2 (2014): 15875-15882.
Wang X K, Li Z Q, Zhang Z W, et al., Mo-doped SnO2 mesoporous hollow structured spheres as anode materials for high-performance lithium ion batteries, J. Mater. Chem. A 2 (2015): 3604-3613.
Ma Y.J, Ma Y, U. Ulissi, et al., Influence of the doping ratio and the carbon coating content on the electrochemical performance of Co-doped SnO2 for lithium-ion anodes, Electrochim. Acta 277 (2018): 100-109.
Zhao P, Yue W B, Yuan X, et al., Exceptional lithium anodic performance of Pd-doped graphene-based SnO2
nanocomposite. Electrochim. Acta 225 (2017): 322-329.
W. Stöber, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range, J.
Colloid and Interf. Sci. 26 (1968): 62-69.
Wang S, Yu X H, Liu J X, et al., Encapsulation of SnO2 nanoparticles between the hollow TiO2 nanosphere and the carbon layer as high-performance negative materials for lithium-ion batteries, J. Alloy. Compd. 814 (2020):
-152349.
Zhang Y N, Zhang Y J, Rong J, et al., Design and controllable synthesis of core-shell nanostructured Ni-P particles with an ionothermal strategy, J. Alloy. Compd. 795 (2019): 177-186.
Wang Y, Guo W B, Yang Y Q, et al., Rational design of SnO2@C@MnO2 hierarchical hollow hybrid nanospheres for a Li-ion battery anode with enhanced performances, Electrochim. Acta 262 (2018): 1-8.
Cui D M, Zheng Z, Peng X, et al., Fluorine-doped SnO2 nanoparticles anchored on reduced graphene oxide as a high-performance lithium ion battery anode, J. Power Sources 362 (2017): 20-26.
F. Mueller, A. Gutsche, H. Nirschl, et al., Iron-doped ZnO for lithium-ion anodes: impact of the dopant ratio and carbon coating content, J. Electrochem. Soc. 164 (2017): A6123-A6130.
F. Mueller, D. Bresser, V.S.K. Chakravadhanula, S. Passerini, Fe-doped SnO2 nanoparticles as new high capacity anode material for secondary lithium-ion batteries, J. Power Sources 299 (2015): 398-402,
P. Nithyadharseni, K.P. Abhilash, S. Petnikota, et al., Synthesis and lithium storage properties of Zn, Co and Mg doped SnO2 nano materials, Electrochim. Acta 247 (2017): 358-370,
D. Bresser, F. Mueller, M. Fiedler, et al., Transition-metal-doped zinc oxide nanoparticles as a new
lithium-ion anode material, Chem. Mater. 25 (2013): 4977-4985.
J.Y. Cheong, C. Kim, J.-W. Jung, et al., Incorporation of amorphous TiO2 into one-dimensional SnO2 nanostructures as superior anodes for lithium-ion batteries, J. Power Sources 400 (2018): 485-492.
Pan L, Zhang Y, Lu F, et al., Exposed facet engineering design of graphene-SnO2 nanorods for ultra-stable Li-ion batteries, Energy Storage Mater. 19 (2019): 39-47.
T.I. Koranyi, Z. Vit, D.G. Po et al.duval, R. Ryoo, H.S. Kim, E.J.M. Hensen, SBA-15-supported nickel phosphide
hydrotreating catalysts, J. Catal. 253 (2008): 119-131.
Y. Okamoto, Y. Nitta, T. Imanaka, et al., Surface characterisation of nickel boride and nickel phosphide
catalysts by X-ray photoelectron spectroscopy, J. Chem. Soc. 75 (1979): 2027-2039.
Zhu C R, Xia X H, Liu J L, et al., TiO2 nanotube@SnO2 nanoflake core – branch arrays for lithium-ion battery
anode, Nano Energy 4 (2014): 105-112.
Cheng Y Y, Huang J F, Qi H, et al., Adjusting the chemical bonding of SnO2@CNT composite for enhanced conversion reaction kinetics, Small 13 (2017): 1700656.
Wang X L, Li J Z, Chen Z, et al., Hierarchically structured C@SnO2@C nanofiber bundles with high stability and
effective ambipolar diffusion kinetics for high-performance Li-ion batteries, J. Mater. Chem. A 4 (2016): 18783-18791.
Wang H M, Yan Y, Chen G. The effects of confinement on TiO2@SnO2@TiO2 hollow spheres for high reversible lithium storage capacity, J. Alloy. Compd. 778 (2019): 375-381.
DOI: https://doi.org/10.33142/rams.v3i2.6729
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Yannan ZHANG, Peng DONG, Yingjie ZHANG, Hong GUO
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.