Research and Application of Materials Science

Efficient bio-assembled nanogenerator fabricated from chicken bone epidermis

MAYanran, WANGYongfa, LILi, WANGChunchang

Abstract


Using biological self-powered materials as a new energy source to replace traditional batteries to power micro-electronic devices is a current research hotspot. We herein fabricate a piezoelectric bio-nanogenerator from chicken bones. The nanogenerator can output a voltage of 1.25 V and a current of 9 nA after being subjected to a pressure of 30 N. This research facilitates an in-depth understanding of bio-nanogenerators and provides a new strategy for reusing bio-waste.

Keywords


nanogenerator; collagen; piezoelectric; chicken bone epidermis

Full Text:

PDF

References


Su Y Li, W Yuan, L Chen, C Pan, H, Xie, G Conta, G, Ferrier, SZhao, X Chen, G Tai, H Jiang, Y Chen. J Piezoelectric fibercomposites with polydopamine interfacial layer forself-powered wearable biomonitoring. Nano Energy2021(89): 106321.

Su, H Wang, X Li, C Wang, Z Wu, Y Zhang, J Zhang, Y Zhao, CWu, J Zheng. H Enhanced energy harvesting ability ofpolydimethylsiloxane-BaTiO3-based flexible piezoelectricnanogenerator for tactile imitation application. NanoEnergy 2021(83): 105809.

Wang, Z Yuan, X Yang, J Huan, Y Gao, X Li, Z Wang, H Dong. S3D-printed flexible, Ag-coated PNN-PZT ceramic-polymergrid-composite for electromechanical energy conversion.Nano Energy 2020(73): 104737.

Ji, S. H Lee, W Yun, J. S All-in-One Piezo-Triboelectric EnergyHarvester Module Based on Piezoceramic Nanofibers forWearable Devices. ACS applied materials & interfaces 2020,12 (16): 18609-18616.

Rahman, M. A Rubaiya, F Islam, N Lozano, K Ashraf, AGraphene-Coated PVDF/PAni Fiber Mats and TheirApplications in Sensing and Nanogeneration. ACS appliedmaterials & interfaces 2022, 14 (33): 38162-38171.

Su, Y Chen, C Pan, H Yang, Y Chen, G Zhao, X Li, W Gong, QXie, G Zhou, Y Zhang, S Tai, H Jiang, Y Chen, J Muscle FibersInspired High‐Performance Piezoelectric Textiles forWearable Physiological Monitoring. Advanced FunctionalMaterials 2021, 31 (19): 2010962.

Zhao, J Li, F Wang, Z Dong, P Xia, G Wang, K Flexible PVDFnanogenerator-driven motion sensors for human bodymotion energy tracking and monitoring. Journal ofMaterials Science: Materials in Electronics 2021, 32 (11):14715-14727.

Cao, L Qiu, X Jiao, Q Zhao, P Li, J Wei, Y. Polysaccharides andproteins-based nanogenerator for energy harvesting andsensing: A review. International journal of biologicalmacromolecules 2021, 173, 225-243.

Chang, T.-H Peng, Y.-W Chen, C.-H Chang, T.-W Wu, J.-MHwang, J.-C Gan, J.-Y Lin, Z.-H. Protein-based contactelectrification and its uses for mechanical energy harvestingand humidity detecting. Nano Energy 2016(21): 238-246.

Alam, M. M Mandal, D. Native Cellulose Microfiber-BasedHybrid Piezoelectric Generator for Mechanical EnergyHarvesting Utility. ACS applied materials & interfaces 2016,8 (3): 8-1555.

Ghosh, S. K Adhikary, P Jana, S Biswas, A. Sencadas, V.Gupta, S. D Tudu, B Mandal, D. Electrospun gelatinnanofiber based self-powered bio-e-skin for health caremonitoring. Nano Energy 2017(36): 166-175.

Ghosh, S. K.; Mandal, D. Bio-assembled, piezoelectricprawn shell made self-powered wearable sensor fornon-invasive physiological signal monitoring. AppliedPhysics Letters 2017, 110 (12): 123701.

Ghosh, S. K Mandal, D. High-performance bio-piezoelectricnanogenerator made with fish scale. Applied Physics Letters2016, 109 (10): 103701.

Ghosh, S. K Mandal, D. Efficient natural piezoelectricnanogenerator: Electricity generation from fish swimbladder. Nano Energy 2016(28): 356-365.

Chen, S Wu, N Lin, S Duan, J Xu, Z Pan, Y Zhang, H Xu, ZHuang, L Hu, B Zhou, J. Hierarchical elastomer tunedself-powered pressure sensor for wearable multifunctionalcardiovascular electronics. Nano Energy 2020(70): 104460.

Shao, D Wang, C Li, W Lu, L Lu, J Yang, W. Natural ginkgotree leaves as piezo-energy harvesters. Journal of MaterialsChemistry C 2022, 10 (40): 15016-15027.

Kar, E Barman, M Das, S Das, A Datta, P Mukherjee, STavakoli, M Mukherjee, N Bose, N. Chicken featherfiber-based bio-piezoelectric energy harvester: an efficientgreen energy source for flexible electronics. SustainableEnergy & Fuels 2021, 5 (6): 1857-1866.

Cao, S Wang, Y Xing, L Zhang, W Zhou, G. Structure and physical properties of gelatin from bovine bone collageninfluenced by acid pretreatment and pepsin. Food andBioproducts Processing 2020(121): 213-223.

Wilson, T Szpak, P. Acidification does not alter the stableisotope composition of bone collagen. PeerJ2022(10):e13593.

Liu, H.; Huang, K., Structural Characteristics of ExtractedCollagen from Tilapia (Oreochromis mossambicus) Bone:Effects of Ethylenediaminetetraacetic Acid Solution andHydrochloric Acid Treatment. International Journal of FoodProperties 2014, 19 (1): 63-75.

Jaziri, A. A Shapawi, R Mohd Mokhtar, R. A Md Noordin, W.N Huda, N. Biochemical analysis of collagens from the boneof lizardfish (Saurida tumbil Bloch, 1795) extracted withdifferent acids. PeerJ 2022(10): e13103.

Muyonga, J. H Cole, C. G. B Duodu, K. G. Characterisationof acid soluble collagen from skins of young and adult Nileperch (Lates niloticus). Food Chemistry 2004, 85 (1): 81-89.

Kaewdang, O Benjakul, S Kaewmanee, T Kishimura, H.Characteristics of collagens from the swim bladders ofyellowfin tuna (Thunnus albacares). Food Chem 2014(155):264-70.

Wang, L. S Shi, Z Shi, B. M Shan, A. S. Effects of dietarystevioside/rebaudioside A on the growth performance anddiarrhea incidence of weaned piglets. Animal Feed Scienceand Technology 2014(187): 104-109.

Guerin, S.; Syed, T. A. M.; Thompson, D., Deconstructingcollagen piezoelectricity usingalanine-hydroxyproline-glycine building blocks. Nanoscale2018, 10 (20): 9653-9663.

Ravi, H. K Simona, F Hulliger, J Cascella, M. MolecularOrigin of Piezo- and Pyroelectric Properties in CollagenInvestigated by Molecular Dynamics Simulations. TheJournal of Physical Chemistry B 2012, 116 (6): 1901-1907.

Wu, B Mu, C Zhang, G Lin, W. Effects of Cr3+ on thestructure of collagen fiber. Langmuir 2009, 25 (19):11905-10.

Weiner, S. W. H. D. The Material Bone:Structure-Mechanical Function Relations. Annual Review ofMaterials Science 1998, 28 (1): 271-298.

Zhou, Z Qian, D Minary-Jolandan, M. MolecularMechanism of Polarization and Piezoelectric Effect inSuper-Twisted Collagen. ACS Biomater Sci Eng 2016, 2(6):929-936.




DOI: https://doi.org/10.33142/rams.v4i1.8460

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Yanran MA, Yongfa WANG, Li LI, Chunchang WANG

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.